Skip to main content

Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins

  • Conference paper
  • First Online:
Interpretable and Annotation-Efficient Learning for Medical Image Computing (IMIMIC 2020, MIL3ID 2020, LABELS 2020)

Abstract

Deploying off-the-shelf segmentation networks on biomedical data has become common practice, yet if structures of interest in an image sequence are visible only temporarily, existing frame-by-frame methods fail. In this paper, we provide a solution to segmentation of imperfect data through time based on temporal propagation and uncertainty estimation. We integrate uncertainty estimation into Mask R-CNN network and propagate motion-corrected segmentation masks from frames with low uncertainty to those frames with high uncertainty to handle temporary loss of signal for segmentation. We demonstrate the value of this approach over frame-by-frame segmentation and regular temporal propagation on data from human embryonic kidney (HEK293T) cells transiently transfected with a fluorescent protein that moves in and out of the nucleus over time. The method presented here will empower microscopic experiments aimed at understanding molecular and cellular function.

Ö. Çiçek and Y. Marrakchi—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://celltrackingchallenge.net/.

  2. 2.

    https://github.com/fcalvet/image_tools.

  3. 3.

    https://lmb.informatik.uni-freiburg.de/Publications/2020/CMB20/.

References

  1. Abdulla, W.: Mask R-CNN for object detection and instance segmentation on Keras and tensorflow. https://github.com/matterport/Mask_RCNN (2017)

  2. Bertasius, G., Torresani, L.: Classifying, segmenting, and tracking object instances in video with mask propagation. Technical Report 1912.04573, arXiv (2019)

    Google Scholar 

  3. Brami-cherrier, K., et al.: Mechanisms of site-specific functions of focal adhesion kinase. Biophys. J. 104, 609 (2013)

    Article  Google Scholar 

  4. Chen, S.Y., et al.: Optogenetic control reveals differential promoter interpretation of transcription factor nuclear translocation dynamics. bioRxiv (2019)

    Google Scholar 

  5. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  7. Huang, G., Li, Y., Pleiss, G.: Snapshot ensembles: train 1, get M for free. In: ICLR (2017)

    Google Scholar 

  8. Ilg, E., et al.: Uncertainty estimates and multi-hypotheses networks for optical flow. In: ECCV (2018)

    Google Scholar 

  9. Jain, S., Wang, X., Gonzalez, J.E.: Accel: A corrective fusion network for efficient semantic segmentation on video. In: CVPR (2019)

    Google Scholar 

  10. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS (2017)

    Google Scholar 

  11. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS Workshop (2016)

    Google Scholar 

  12. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: ICLR (2017)

    Google Scholar 

  13. Makansi, O., Ilg, E., Çiçek, Ö., Brox, T.: Overcoming limitations of mixture density networks: a sampling and fitting framework for multimodal future prediction. In: CVPR (2019)

    Google Scholar 

  14. Milan, A., Rezatofighi, S.H., Dick, A., Reid, I., Schindler, K.: Online multi-target tracking using recurrent neural networks. In: AAAI (2017)

    Google Scholar 

  15. Niopek, D., et al.: Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nature Commun. 5, 4404 (2014)

    Article  Google Scholar 

  16. Paul, M., Mayer, C., Gool, L.V., Timofte, R.: Efficient video semantic segmentation with labels propagation and refinement. Technical Report 1912.11844, arXiv (2019)

    Google Scholar 

  17. Payer, C., Štern, D., Neff, T., Bischof, H., Urschler, M.: Instance segmentation and tracking with cosine embeddings and recurrent hourglass networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_1

    Chapter  Google Scholar 

  18. Repina, N.A., Rosenbloom, A., Mukherjee, A., Schaffer, D.V., Kane, R.S.: At light speed: Advances in optogenetic systems for regulating cell signaling and behavior. Ann. Rev. Chem. Biomol. Eng. 8(1), 13–39 (2017)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

Download references

Acknowledgments

This project was funded by the German Research Foundation (DFG) and the German Ministry of Education and Science (BMBF). Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzstrategie des Bundes und der Länder - EXC-2189 - Projektnummer 390939984 und durch das Bundesministerium für Bildung und Forschung (BMBF) Projektnummer 01IS18042B und 031L0079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgün Çiçek .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 263 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Çiçek, Ö., Marrakchi, Y., Boasiako Antwi, E., Di Ventura, B., Brox, T. (2020). Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins. In: Cardoso, J., et al. Interpretable and Annotation-Efficient Learning for Medical Image Computing. IMIMIC MIL3ID LABELS 2020 2020 2020. Lecture Notes in Computer Science(), vol 12446. Springer, Cham. https://doi.org/10.1007/978-3-030-61166-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61166-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61165-1

  • Online ISBN: 978-3-030-61166-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics