Skip to main content

eWound-PRIOR: An Ensemble Framework for Cases Prioritization After Orthopedic Surgeries

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2020)

Abstract

Patient follow-up appointments are an imperative part of the healthcare model to ensure safe patient recovery and proper course of treatment. The use of mobile devices can help patient monitoring and predictive approaches can provide computational support to identify deteriorating cases. Aiming to aggregate the data produced by those devices with the power of predictive approaches, this paper proposes the eWound-PRIOR framework to provide a remote assessment of postoperative orthopedic wounds. Our approach uses Artificial Intelligence (AI) techniques to process patients’ data related to postoperative wound healing and makes predictions as to whether the patient requires an in-person assessment or not. The experiment results showed that the predictions are promising and adherent to the application context, even if the on-line questionnaire had impaired the training model and the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marsh, J., Hoch, J.S., Bryant, D., MacDonald, S.J., Naudie, D., McCalden, R., Howard, J., Bourne, R., McAuley, J.: Economic evaluation of web-based compared with in-person follow-up after total joint arthroplasty. JBJS 96(22), 1910–1916 (2014)

    Article  Google Scholar 

  2. Salvati, E., Robinson, R., Zeno, S., Koslin, B., Brause, B., Wilson, J.P.: Infection rates after 3175 total hip and total knee replacements performed with and without a horizontal unidirectional filtered air-flow system. J. Bone Joint Surg. Am. 64(4), 525–535 (1982)

    Article  Google Scholar 

  3. Wildner, M., Peters, A., Hellich, J., Reichelt, A.: Complications of high tibial osteotomy and internal fixation with staples. Arch. Orthop. Trauma Surg. 111(4), 210–212 (1992)

    Article  Google Scholar 

  4. Jeffery, W.G.: e-visits for early post-operative visits following orthopaedic surgery can they add efficiency without sacrificing effectiveness. Electronic Thesis and Dissertation Repository, vol. 5053 (2017). https://ir.lib.uwo.ca/etd/5053

  5. Ali, F., Islam, S.R., Kwak, D., Khan, P., Ullah, N., Yoo, S.J., Kwak, K.: Type-2 fuzzy ontology–aided recommendation systems for IoT–based healthcare. Comput. Commun. 119, 138–155 (2018)

    Article  Google Scholar 

  6. Mustaqeem, A., Anwar, S.M., Khan, A.R., Majid, M.: A statistical analysis based recommender model for heart disease patients. Int. J. Med. Inf. 108, 134–145 (2017)

    Article  Google Scholar 

  7. Dreiseitl, S., Ohno-Machado, L.: Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35(5–6), 352–359 (2002)

    Article  Google Scholar 

  8. Araya, D.B., Grolinger, K., ElYamany, H.F., Capretz, M.A., Bitsuamlak, G.: An ensemble learning framework for anomaly detection in building energy consumption. Energy Build. 144, 191–206 (2017)

    Article  Google Scholar 

  9. Zhou, Z.H.: Ensemble Learning, pp. 411–416. Boston. Springer, Heidelberg (2015)

    Google Scholar 

  10. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    Article  Google Scholar 

  11. Rallapalli, S., Gondkar, R.: Big data ensemble clinical prediction for healthcare data by using deep learning model. Int. J. Big Data Intell. 5(4), 258–269 (2018)

    Article  Google Scholar 

  12. Kurian, R.A., Lakshmi, K.: An ensemble classifier for the prediction of heart disease. Int. J. Sci. Res. Comput. Sci. 3(6), 25–31 (2018)

    Google Scholar 

  13. Tuli, S., Basumatary, N., Gill, S.S., Kahani, M., Arya, R.C., Wander, G.S., Buyya, R.: “Healthfog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments. Fut. Gener. Comput. Syst. 104, 187–200 (2020)

    Article  Google Scholar 

  14. Zhang, K., Liu, X., Jiang, J., Li, W., Wang, S., Liu, L., Zhou, X., Wang, L.: Prediction of postoperative complications of pediatric cataract patients using data mining. J. Transl. Med. 17(1), 2 (2019)

    Article  Google Scholar 

  15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, Technical Report (1985)

    Google Scholar 

  16. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  17. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  18. McClelland, J.L., Rumelhart, D.E., Group, P.R., et al.: Parallel Distributed Processing, vol. 2. MIT press, Cambridge (1987)

    Google Scholar 

  19. Polikar, R.: Ensemble Learning, pp. 1–34. Springer, Heidelberg (2012)

    Google Scholar 

  20. Tan, C.C., Eswaran, C.: Using autoencoders for mammogram compression. J. Med. Syst. 35(1), 49–58 (2011)

    Article  Google Scholar 

  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Braz, F., Campos, F., Stroele, V., Dantas, M.: An early warning model for school dropout: a case study in e-learning class. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), vol. 30, no. 1, p. 1441 (2019)

    Google Scholar 

  23. Lalkhen, A.G., McCluskey, A.: Clinical tests: sensitivity and specificity. Contin. Educ. Anaesth. Crit. Care Pain 8(6), 221–223 (2008). https://doi.org/10.1093/bjaceaccp/mkn041

    Article  Google Scholar 

Download references

Acknowledgments

ELAP from University of Western Ontario, Canada, Federal University of Juiz de Fora (UFJF), CAPES, CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Ströele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neves, F., Jennings, M., Capretz, M., Bryant, D., Campos, F., Ströele, V. (2021). eWound-PRIOR: An Ensemble Framework for Cases Prioritization After Orthopedic Surgeries. In: Barolli, L., Takizawa, M., Yoshihisa, T., Amato, F., Ikeda, M. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2020. Lecture Notes in Networks and Systems, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-030-61105-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61105-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61104-0

  • Online ISBN: 978-3-030-61105-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics