Skip to main content

Double Channel Neural Non Invasive Blood Pressure Prediction

  • Conference paper
  • First Online:
Book cover Intelligent Computing Theories and Application (ICIC 2020)

Abstract

Cardiovascular Diseases represent the leading cause of deaths in the world. Arterial Blood Pressure (ABP) is an important physiological parameter that should be properly monitored for the purposes of prevention. This work applies the neural network output-error (NNOE) model to ABP forecasting. Three input configurations are proposed based on ECG and PPG for estimating both systolic and diastolic blood pressures. The double channel configuration is the best performing one by means of the mean absolute error w.r.t the corresponding invasive blood pressure signal (IBP); indeed, it is also proven to be compliant with the ANSI/AAMI/ISO 81060-2:2013 regulation for non invasive ABP techniques. Both ECG and PPG correlations to IBP signal are further analyzed using Spearman’s correlation coefficient. Despite it suggests PPG is more closely related to ABP, its regression performance is worse than ECG input configuration one. However, this behavior can be explained looking to human biology and ABP computation, which is based on peaks (systoles) and valleys (diastoles) extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, C., Sagar, V., Kumar, M., Kiran, K.: Awareness about hypertension and its modifiable risk factors among adult population in a rural area of Ranchi district of Jharkhand, India. Int. J. Community Med. Public Heal. 3(5), 1069–1073 (2016). https://doi.org/10.18203/2394-6040.ijcmph20161359

    Article  Google Scholar 

  2. Leung, A.A., et al.: Hypertension Canada’s 2017 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults. Can. J. Cardiol. 33(5), 557–576 (2017). https://doi.org/10.1016/j.cjca.2017.03.005

    Article  Google Scholar 

  3. Järhult, J., Mellander, S.: Autoregulation of capillary hydrostatic pressure in skeletal muscle during regional arterial hypo- and hypertension. Acta Physiol. Scand. 91(1), 32–41 (1974). https://doi.org/10.1111/j.1748-1716.1974.tb05654.x

    Article  Google Scholar 

  4. James, P.A., et al.: 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA – J. Am. Med. Assoc. 311(5), 507–520 (2014). https://doi.org/10.1001/jama.2013.284427

    Article  Google Scholar 

  5. Understanding Blood Pressure Readings | American Heart Association. https://www.heart.org/en/health-topics/high-blood-pressure/understanding-blood-pressure-readings. Accessed 11 May 2020

  6. Torlasco, C., et al.: [BP.03.03] cardiovascular risk and hypertension control in Italy. Data from the 2015 world hypertension day. J. Hypertens. 35, e176–e177 (2017). https://doi.org/10.1097/01.hjh.0000523480.78727.21

    Article  Google Scholar 

  7. Pellaton, C., et al.: Accuracy testing of a new optical device for noninvasive estimation of systolic and diastolic blood pressure compared to intra-arterial measurements. Blood Press. Monit. 25(2), 105–109 (2020). https://doi.org/10.1097/MBP.0000000000000421

    Article  Google Scholar 

  8. Pickering, T.G., et al.: Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans - a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on high blood pressure research. Circulation 111(5), 697–716 (2005). https://doi.org/10.1161/01.cir.0000154900.76284.f6

    Article  Google Scholar 

  9. Menolascina, F., et al.: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinformatics 10(SUPPL. 12), S4 (2009). https://doi.org/10.1186/1471-2105-10-S12-S4

    Article  Google Scholar 

  10. Itchhaporia, D., Snow, P.B., Almassy, R.J., Oetgen, W.J.: Artificial neural networks: Current status in cardiovascular medicine. J. Am. Coll. Cardiol. 28(2), 515–521 (1996). https://doi.org/10.1016/0735-1097(96)00174-x

    Article  Google Scholar 

  11. Bevilacqua, V., et al.: A novel approach to evaluate blood parameters using computer vision techniques. In: 2016 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2016 - Proceedings (2016). https://doi.org/10.1109/memea.2016.7533760

  12. Randazzo, V., Ferretti, J., Pasero, E.: ECG WATCH: a real time wireless wearable ECG. In: Medical Measurements and Applications, MeMeA 2019 - Symposium Proceedings (2019). https://doi.org/10.1109/memea.2019.8802210

  13. Randazzo, V., Ferretti, J., Pasero, E.: A wearable smart device to monitor multiple vital parameters—VITAL ECG. Electronics 9(2), 300 (2020). https://doi.org/10.3390/electronics9020300

    Article  Google Scholar 

  14. Randazzo, V., Pasero, E., Navaretti, S.: VITAL-ECG: a portable wearable hospital. In: 2018 IEEE Sensors Applications Symposium, SAS 2018 - Proceedings, January 2018, pp. 1–6 (2018). https://doi.org/10.1109/sas.2018.8336776

  15. Paviglianiti, A., Pasero, E.: VITAL-ECG: a de-bias algorithm embedded in a gender-immune device. In: 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, pp. 314–318 (2020). https://doi.org/10.1109/metroind4.0iot48571.2020.9138291

  16. Paviglianiti, A., Randazzo, V., Pasero, E., Vallan, A.: Noninvasive arterial blood pressure estimation using ABPNet and VITAL-ECG. In: I2MTC 2020 - International Instrumentation and Measurement Technology Conference, Proceedings (2020). https://doi.org/10.1109/i2mtc43012.2020.9129361

  17. Chua, C.P., Heneghan, C.: Continuous blood pressure monitoring using ECG and finger photoplethysmogram. In: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, pp. 5117–5120 (2006). https://doi.org/10.1109/iembs.2006.259612

  18. Chua, E.C.P., Redmond, S.J., McDarby, G., Heneghan, C.: Towards using photo-plethysmogram amplitude to measure blood pressure during sleep. Ann. Biomed. Eng. 38(3), 945–954 (2010). https://doi.org/10.1007/s10439-009-9882-z

    Article  Google Scholar 

  19. Moody, G.B., Mark, R.G.: A database to support development and evaluation of intelligent intensive care monitoring. Comput. Cardiol. 657–660 (1996). http://doi.org/10.1109/cic.1996.542622

  20. Nørgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook. Springer, London (2000)

    Book  Google Scholar 

  21. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23) (2000). https://doi.org/10.1161/01.cir.101.23.e215

  22. Haykin, S.: Neural Networks: A Comprehensive Foundation, 3rd edn., vol. 13, no. 4. Prentice-Hall, Inc., Upper Saddle River ©2007 (1999)

    Google Scholar 

  23. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2, 568–576 (1991)

    Article  Google Scholar 

  24. Rawlings, J.O., Pantula, S.G., Dickey, D.A.: Applied Regression Analysis: A Research Tool, 2nd edn. Springer, New York (1998). https://doi.org/10.1007/b98890

    Book  MATH  Google Scholar 

  25. Willmott, C., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005). https://doi.org/10.3354/cr030079

    Article  Google Scholar 

  26. Paviglianiti, A., Randazzo, V., Cirrincione, G., Pasero, E.: Neural recurrent approaches to noninvasive blood pressure estimation. In: 2020 International Joint Conference on Neural Networks (IJCNN) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annunziata Paviglianiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paviglianiti, A., Randazzo, V., Cirrincione, G., Pasero, E. (2020). Double Channel Neural Non Invasive Blood Pressure Prediction. In: Huang, DS., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12463. Springer, Cham. https://doi.org/10.1007/978-3-030-60799-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60799-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60798-2

  • Online ISBN: 978-3-030-60799-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics