Skip to main content

Therapeutic Efficacy of Plasmalogens for Alzheimer’s Disease, Mild Cognitive Impairment, and Parkinson’s Disease in Conjunction with a New Hypothesis for the Etiology of Alzheimer’s Disease

  • Chapter
  • First Online:
Peroxisome Biology: Experimental Models, Peroxisomal Disorders and Neurological Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1299))

Abstract

It has been reported in recent years that blood levels of plasmalogens (Pls) are decreased in various diseases. None of those reports, however, conducted any clinical trials to examine the effect of Pls on those diseases. This article describes our recent report on a therapeutic efficacy of orally administered Pls in mild cognitive impairment (MCI), mild to severe Alzheimer’s disease (AD), and Parkinson’s disease (PD). A 24-week, multicenter, randomized, double-blind, placebo-controlled trial was performed in patients with MCI (n = 178) and mild AD (n = 98). The study design for moderate AD (n = 57) and severe AD (n = 18) was 12-week open-labeled, and the design for patients with PD (n = 10) was 24-week open-labeled. They showed a significant improvement in cognitive function and other clinical symptoms with elevation of the blood Pls levels. No adverse events were reported. The baseline levels of plasma ethanolamine plasmalogen and erythrocyte ethanolamine plasmalogen in MCI, AD, and PD were significantly lower than those of normal aged. The degree of reduction in the blood Pls levels was in the order of MCI ≺ mild AD ≺ moderate AD ≺ severe AD ≺ PD. The findings suggest that the blood levels of Pls may be a beneficial biomarker for assessing AD severity. Based on these results, we have proposed a new hypothesis for the etiology of AD and other neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Alzheimer Report (2018) The state of the art of dementia research: New frontiers. Alzheimer’s Disease International, London

    Google Scholar 

  2. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson RM, Hadjichrysanthou C, Evans S, Wong MM (2017) Why do so many clinical trials of therapies for Alzheimer’s disease fail? Lancet 390:2327–2329

    Article  PubMed  Google Scholar 

  4. Farooqui AA, Horrocks LA (2001) Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245

    Article  CAS  PubMed  Google Scholar 

  5. Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L (2012) Potential roles of peroxisomes in Alzheimer’s disease and in dementia of the Alzheimer’s type. J Alzheimers Dis 29:241–254

    Article  CAS  PubMed  Google Scholar 

  6. Braverman NE, Moser AB (2012) Functions and biosynthesis of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822:1442–1452

    Article  CAS  PubMed  Google Scholar 

  7. Dorninger F, Forss-Petter S, Berger J (2017) From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 591:2761–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su XQ, Wang J, Sinclair AJ (2019) Plasmalogens and Alzheimer’s disease: a review. Lipids Health Dis 18:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paul S, Lancaster GI, Meikle PJ (2019) Plasmalogens: a potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 74:186–195

    Article  CAS  PubMed  Google Scholar 

  10. Ginsberg L, Rafique S, Xuereb JH, Rapoport SI, Gershfeld NL (1995) Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res 698:223–226

    Article  CAS  PubMed  Google Scholar 

  11. Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ (1999) Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol 58:740–747

    Article  CAS  PubMed  Google Scholar 

  12. Han X, Holtzman DM, McKeel DW Jr (2001) Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77:1168–1180

    Article  CAS  PubMed  Google Scholar 

  13. Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PW et al (2007) Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. J Lipid Res 48:2485–2498

    Article  CAS  PubMed  Google Scholar 

  14. Wood PL, Mankidy R, Ritchie S, Heath D, Wood JA, Flax J et al (2010) Circulating plasmalogen levels and Alzheimer disease assessment scale-cognitive scores in Alzheimer patients. J Psychiatry Neurosci 35:59–62

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oma S, Mawatari S, Saito K, Fujino T (2012) Changes in phospholipid composition of erythrocyte membrane in Alzheimer’s disease. Dement Geriatr Cogn Disord Extra 2:298–303

    Article  Google Scholar 

  16. Wood PL, Barnette BL, Kaye JA, Quinn JF, Woltjer RL (2015) Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer’s disease subjects. Acta Neuropsychiatr 27:270–278

    Article  PubMed  Google Scholar 

  17. Yamashita S, Kiko T, Fujiwara H, Hashimoto M, Nakagawa K, Kinoshita M et al (2015) Alterations in the levels of amyloid-β, phospholipid hydroperoxide, and plasmalogen in the blood of patients with Alzheimer’s disease: possible interactions between amyloid-β and these lipids. J Alzheimers Dis 50:527–553

    Article  CAS  Google Scholar 

  18. Zarrouk A, Debbabi M, Bezine M, Karym EM, Badreddine A, Rouaud O et al (2018) Lipid biomarkers in Alzheimer’s disease. Curr Alzheimer Res 15:303–312

    Article  CAS  PubMed  Google Scholar 

  19. Mawatari S, Okuma Y, Fujino T (2007) Separation of intact plasmalogens and all other phospholipids by a single run of high-performance liquid chromatography. Anal Biochem 370:54–59

    Article  CAS  PubMed  Google Scholar 

  20. Mawatari S, Yunoki K, Sugiyama M, Fujino T (2009) Simultaneous preparation of purified plasmalogens and sphingomyelin in human erythrocytes with phospholipase A1 from Aspergillus oryzae. Biosci Biotechnol Biochem 73:2621–2625

    Article  CAS  PubMed  Google Scholar 

  21. Katafuchi T, Ifuku M, Mawatari S, Fujino T (2012) Effects of plasmalogens on systemic lipopolysaccharide-induced glial activation and β-amyloid accumulation in adult mice. Ann N Y Acad Sci 1262:85–92

    Article  CAS  PubMed  Google Scholar 

  22. Hossain MS, Ifuku M, Take S, Kawamura J, Miake K, Katafuchi T (2013) Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling. PLoS One 8:e83508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hossain MS, Mineno K, Katafuchi T (2016) Neuronal orphan G-protein coupled receptor proteins mediate plasmalogens-induced activation of ERK and Akt signaling. PLoS One 11:e0150846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Fujino T, Yamada T, Asada T, Tsuboi Y, Wakana C, Mawatari S et al (2017) Efficacy and blood plasmalogen changes by oral administration of plasmalogen in patients with mild Alzheimer’s disease and mild cognitive impairment: a multicenter, randomized, double-blind, placebo-controlled trial. EBioMedicine 17:199–205

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fujino T, Yamada T, Asada T, Ichimaru M, Tsuboi Y, Wakana C et al (2018) Effects of plasmalogen on patients with mild cognitive impairment: a randomized, placebo-controlled trial in Japan. J Alzheimers Dis Parkinsonism 8:419

    Article  Google Scholar 

  26. Fujino T, Yamada T, Mawatari S, Shinfuku N, Tsuboi Y, Wakana C et al (2019) Effects of plasmalogen on patients with moderate-to-severe Alzheimer’s disease and blood plasmalogen changes: a multi-center, open-label study. J Alzheimers Dis Parkinsonism 9:4

    Google Scholar 

  27. Mawatari S, Ohara S, Taniwaki Y, Tsuboi,Y, Maruyama T, Fujino F. Improvement of blood plasmalogens and clinical symptoms in Parkinson’s disease by oral administration of ether phospholipids: a preliminary report. Parkinson’s Disease 2020:2020:671070

    Google Scholar 

  28. Inamura K, Shinagawa S. Core symptom: cognitive impairment. Nakashima K edited, handbook on dementia.Tokyo: Igaku-Shoin Ltd; 2013. p28–35

    Google Scholar 

  29. Kou J, Kovacs GG, Höftberger R, Kulik W, Brodde A, Forss-Petter S et al (2011) Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol 122:271–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakamura Y, Imai Y, Shigeta M, Graf A, Shirahase T, Kim H et al (2011) A 24-week, randomized, double-blind, placebo-controlled study to evaluate the efficacy, safety and tolerability of the rivastigmine patch in Japanese patients with Alzheimer’s disease. Dement Geriatr Cogn Dis Extra 1:163–179

    Article  PubMed  PubMed Central  Google Scholar 

  31. New DC, Wong YH (2007) Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pike LJ, Han X, Chung KN, Gross RW (2002) Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41:2075–2088

    Article  CAS  PubMed  Google Scholar 

  33. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rats and caveolae; how, when and why do they go there? J Mol Endocrinol 32:325–338

    Article  CAS  PubMed  Google Scholar 

  34. Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ (2016) Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol Motil 22:201–212

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mawatari S, Katafuchi T, Miake Y, Fujino T (2012) Dietary plasmalogen increases erythrocyte membrane plasmalogen in rats. Lipids Health Dis 11:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wallner S, Schmitz G (2011) Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 164:573–589

    Article  CAS  PubMed  Google Scholar 

  37. Lessig J, Fuchs B (2009) Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr Med Chem 16:2021–2041

    Article  CAS  PubMed  Google Scholar 

  38. Luoma AM, Kuo F, Cakici O, Crowther MN, Denninger AR, Avila RL et al (2015) Plasmalogen phospholipids protect internodal myelin from oxidative damage. Free Radic Biol Med 84:296–310

    Article  CAS  PubMed  Google Scholar 

  39. Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sohmiya M, Tanaka M, Tak NW, Yanagisawa M, Tanino Y, Suzuki Y et al (2004) Redox status of plasma coenzyme Q10 indicates elevated systemic oxidative stress in Parkinson’s disease. J Neurol Sci 223:161–166

    Article  CAS  PubMed  Google Scholar 

  41. Dragonas C, Bertsch T, Sieber CC, Brosche T (2009) Plasmalogens as a marker of elevated systemic oxidative stress in Parkinson’s disease. Clin Chem Lab Med 47:894–897

    Article  CAS  PubMed  Google Scholar 

  42. Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 4:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Moraitou M, Dermentzaki G, Dimitriou E, Monopolis I, Dekker N, Aerts H et al (2016) α-Synuclein dimerization in erythrocytes of Gaucher disease patients: correlation with lipid abnormalities and oxidative stress. Neurosci Lett 613:1–5

    Article  CAS  PubMed  Google Scholar 

  44. Gregoire L, Smith T, Senanayake V, Mochizuki A, Miville-Godbout E, Goodenowe D et al (2015) Plasmalogen precursor analog treatment reduces levodopa-induced dyskinesias in parkinsonian monkeys. Behav Brain Res 286:328–337

    Article  CAS  PubMed  Google Scholar 

  45. Miville-Godbout E, Bourque M, Morissette M, Al-Sweidi S, Smith T, Mochizuki A et al (2016) Plasmalogen augmentation reverses striatal dopamine loss in MPTP mice. PLoS One 11:e0151020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Snowdon D (1997) Aging and Alzheimer’s disease: lessons from the Nun Study. Gerontologist 37:150–156

    Google Scholar 

  47. Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M et al (2018) Trial of Solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 378:321–330

    Article  CAS  PubMed  Google Scholar 

  48. Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B et al (2018) Randomized trial of Verubecestat for mild-to-moderate Alzheimer’s disease. N Engl J Med 378:1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Werner ER, Keller MA, Sailer S, Lackner K, Koch J, Hermann M et al (2020) The TMEM189 gene encodes plasmanylethanolamine desaturase which introduces the characteristic vinyl ether double bond into plasmalogens. PNAS 117:7792–7798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walter J, Kemmerling N, Wunderlich P, Glebov K (2017) γ-Secretase in microglia - implications for neurodegeneration and neuroinflammation. J Neurochem 143:445–454

    Article  CAS  PubMed  Google Scholar 

  51. Dorninger F, Gundacker A, Zeitler G, Pollak DD, Berger J (2019) Ether lipid deficiency in mice produces a complex behavioral phenotype mimicking aspects of human psychiatric disorders. Int J Mol Sci 20:3929

    Article  CAS  PubMed Central  Google Scholar 

  52. Wood PL, Unfried G, Whitehead W, Phillipps A, Wood JA (2015) Dysfunctional plasmalogen dynamics in the plasma and platelets of patients with schizophrenia. Schizophr Res 161:506–510

    Article  PubMed  Google Scholar 

  53. Kaddurah-Daouk R, McEvoy J, Baillie R, Zhu H, Yao JK, Nimgaonkar VL et al (2012) Impaired plasmalogens in patients with schizophrenia. Psychiatry Res 198:347–352

    Article  CAS  PubMed  Google Scholar 

  54. Dorninger F, Moser AB, Kou J, Wiesinger C, Forss-Petter S, Gleiss A et al (2018) Alterations in the plasma levels of specific choline phospholipids in Alzheimer’s disease mimic accelerated aging. J Alzheimers Dis 62:841–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ms. Chizuko Kanemaru and Ms. Chikako Wakana for their support in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Fujino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujino, T., Hossain, M.S., Mawatari, S. (2020). Therapeutic Efficacy of Plasmalogens for Alzheimer’s Disease, Mild Cognitive Impairment, and Parkinson’s Disease in Conjunction with a New Hypothesis for the Etiology of Alzheimer’s Disease. In: Lizard, G. (eds) Peroxisome Biology: Experimental Models, Peroxisomal Disorders and Neurological Diseases. Advances in Experimental Medicine and Biology, vol 1299. Springer, Cham. https://doi.org/10.1007/978-3-030-60204-8_14

Download citation

Publish with us

Policies and ethics