Skip to main content

Higher-Order Flux with Spherical Harmonics Transform for Vascular Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12266))

Abstract

In this paper, we present a novel flux-based method to robustly identify the vasculature structure in the angiography, where the curvilinear geometry is delineated by the higher-order tensor computed in the spherical frequency domain. We first modify the vesselness measurement derived from the oriented flux and introduce an antisymmetry measurement to generate the curvilinear responses. We then extend the responses to the cylindrical model and fit them into spherical harmonics transform to perform high-order tensor analysis, in which fiber orientation distribution function is utilized. A graphical framework based on the random walker is applied for vascular segmentation. It is experimentally demonstrated that the proposed method can achieve accurate and stable segmentation performance with various noise levels, demonstrating the proposed method can deliver reliable curvilinear structure responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, Y., Tek, H., Funka-Lea, G.: Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 74–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_10

    Chapter  Google Scholar 

  2. Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2), 61–75 (2002)

    Article  Google Scholar 

  3. Cetin, S., Unal, G.: A higher-order tensor vessel tractography for segmentation of vascular structures. IEEE Trans. Med. Imaging 34(10), 2172–2185 (2015)

    Article  Google Scholar 

  4. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)

    Article  Google Scholar 

  5. Descoteaux, M., Deriche, R., Knosche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009)

    Article  Google Scholar 

  6. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  7. Grady, L.: Random walks for image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  8. Hamarneh, G., Jassi, P.: Vascusynth: simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis. Compute. Med. Imaging Graph. 34(8), 605–616 (2010)

    Article  Google Scholar 

  9. Jassi, P., Hamarneh, G.: Vascusynth: vascular tree synthesis software. Insight J. (2011)

    Google Scholar 

  10. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_27

    Chapter  Google Scholar 

  11. Merveille, O., Talbot, H., Najman, L., Passat, N.: Curvilinear structure analysis by ranking the orientation responses of path operators. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 304–317 (2018)

    Article  Google Scholar 

  12. Moreno, R., Smedby, Ö.: Vesselness estimation through higher-order orientation tensors. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1139–1142. IEEE (2016)

    Google Scholar 

  13. Moriconi, S., Zuluaga, M.A., Jäger, H.R., Nachev, P., Ourselin, S., Cardoso, M.J.: VTrails: inferring vessels with geodesic connectivity trees. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 672–684. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_53

    Chapter  Google Scholar 

  14. Schultz, T.: Towards resolving fiber crossings with higher order tensor inpainting. In: Laidlaw, D., Vilanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields. MATHVISUAL. Springer, Heidelberg (2012)

    Google Scholar 

  15. Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intelligence 24(12), 1565–1578 (2002)

    Article  Google Scholar 

  16. Wang, J., Chung, A.C.S.: High-order oriented cylindrical flux for curvilinear structure detection and vessel segmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 479–491. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_37

    Chapter  Google Scholar 

  17. Zhang, Q., Chung, A.C.S.: 3D vessel segmentation using random walker with oriented flux analysis and direction coherence. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 281–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43775-0_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jierong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Chung, A.C.S. (2020). Higher-Order Flux with Spherical Harmonics Transform for Vascular Analysis. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics