Skip to main content

Realistic Adversarial Data Augmentation for MR Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Neural network-based approaches can achieve high accuracy in various medical image segmentation tasks. However, they generally require large labelled datasets for supervised learning. Acquiring and manually labelling a large medical dataset is expensive and sometimes impractical due to data sharing and privacy issues. In this work, we propose an adversarial data augmentation method for training neural networks for medical image segmentation. Instead of generating pixel-wise adversarial attacks, our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field. The proposed method does not rely on generative networks, and can be used as a plug-in module for general segmentation networks in both supervised and semi-supervised learning. Using cardiac MR imaging we show that such an approach can improve the generalization ability and robustness of models as well as provide significant improvements in low-data scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html.

References

  1. Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image segmentation on GPUs-a comprehensive review. Med. Image Anal. 20(1), 1–18 (2015)

    Article  Google Scholar 

  2. Shen, D., Guorong, W., Suk, H.-I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  3. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  4. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Arxiv, August 2019

    Google Scholar 

  5. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: CVPR, pp. 8543–8553 (2019)

    Google Scholar 

  6. Liu, J., Shen, C., Liu, T., Aguilera, N., Tam, J.: Active appearance model induced generative adversarial network for controlled data augmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 201–208. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_23

    Chapter  Google Scholar 

  7. Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised and task-driven data augmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_3

    Chapter  Google Scholar 

  8. Xing, Y., et al.: Adversarial pulmonary pathology translation for pairwise chest x-ray data augmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 757–765. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_84

    Chapter  Google Scholar 

  9. Lei, N., et al.: A geometric understanding of deep learning. Engineering 6, 361–374 (2020)

    Article  Google Scholar 

  10. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. TMI 29(6), 1310–1320 (2010)

    Google Scholar 

  11. Khalili, N., et al.: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn. Reson. Imaging 64, 7–89 (2019)

    Article  Google Scholar 

  12. Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness: adversarial examples for medical imaging. In: MICCAI (2018)

    Google Scholar 

  13. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Intelligent image synthesis to attack a segmentation CNN using adversarial learning. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) SASHIMI 2019. LNCS, vol. 11827, pp. 90–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_10

    Chapter  Google Scholar 

  14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  15. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR, June 2017

    Google Scholar 

  16. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: NeurIPS, pp. 5339–5349 (2018)

    Google Scholar 

  17. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 39–57 (2017)

    Google Scholar 

  18. Tramèr, F., Boneh, D.: Adversarial training and robustness for multiple perturbations. In: NIPS, April 2019

    Google Scholar 

  19. Miyato, T., Maeda, S.-I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and Semi-Supervised learning. In: TPAMI (2018)

    Google Scholar 

  20. Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness: adversarial examples for medical imaging. In: MICCAI, March 2018

    Google Scholar 

  21. Kanbak, C., Moosavi-Dezfooli, S.-M., Frossard, P.: Geometric robustness of deep networks: analysis and improvement. In: CVPR, pp. 4441–4449 (2018)

    Google Scholar 

  22. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape of spatial robustness. In: Chaudhuri, K., Salakhutdinov, R. (eds.) ICML, Proceedings of Machine Learning Research, vol. 97, pp. 1802–1811, Long Beach, California (2019). PMLR

    Google Scholar 

  23. Zeng, X., et al.: Adversarial attacks beyond the image space. In: CVPR, pp. 4302–4311 (2019)

    Google Scholar 

  24. Alaifari, R., Alberti, G.S., Gauksson, T.: Adef: an iterative algorithm to construct adversarial deformations. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019 (2019)

    Google Scholar 

  25. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  26. Gallier, J., Gallier, J.H.: Curves and Surfaces in Geometric Modeling: Theory and Algorithms. Morgan Kaufmann, San Francisco (2000)

    MATH  Google Scholar 

  27. Chen, C., et al.: Unsupervised multi-modal style transfer for cardiac MR segmentation. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 209–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_22

    Chapter  Google Scholar 

  28. Bernard, O., Lalande, A., Jodoin, P.-M.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? TMI 0062(11), 2514–2525 (2018)

    Google Scholar 

  29. Sandkühler, R., Jud, C., Andermatt, S., Cattin, P.C.: AirLab: autograd image registration laboratory. Arxiv (2018)

    Google Scholar 

  30. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  31. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: ICLR (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the SmartHeart EPSRC Programme Grant(EP/P001009/1) and the EPSRC Programme Grant (EP/R005982/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2575 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, C. et al. (2020). Realistic Adversarial Data Augmentation for MR Image Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12261. Springer, Cham. https://doi.org/10.1007/978-3-030-59710-8_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59710-8_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59709-2

  • Online ISBN: 978-3-030-59710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics