Skip to main content

Unveiling Relations in the Industry 4.0 Standards Landscape Based on Knowledge Graph Embeddings

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12392))

Abstract

Industry 4.0 (I4.0) standards and standardization frameworks have been proposed with the goal of empowering interoperability in smart factories. These standards enable the description and interaction of the main components, systems, and processes inside of a smart factory. Due to the growing number of frameworks and standards, there is an increasing need for approaches that automatically analyze the landscape of I4.0 standards. Standardization frameworks classify standards according to their functions into layers and dimensions. However, similar standards can be classified differently across the frameworks, producing, thus, interoperability conflicts among them. Semantic-based approaches that rely on ontologies and knowledge graphs, have been proposed to represent standards, known relations among them, as well as their classification according to existing frameworks. Albeit informative, the structured modeling of the I4.0 landscape only provides the foundations for detecting interoperability issues. Thus, graph-based analytical methods able to exploit knowledge encoded by these approaches, are required to uncover alignments among standards. We study the relatedness among standards and frameworks based on community analysis to discover knowledge that helps to cope with interoperability conflicts between standards. We use knowledge graph embeddings to automatically create these communities exploiting the meaning of the existing relationships. In particular, we focus on the identification of similar standards, i.e., communities of standards, and analyze their properties to detect unknown relations. We empirically evaluate our approach on a knowledge graph of I4.0 standards using the Trans\(^*\) family of embedding models for knowledge graph entities. Our results are promising and suggest that relations among standards can be detected accurately.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/i40-Tools/I40KG-Embeddings.

  2. 2.

    \(M_p\) corresponds to a projection matrix \(M_p \in \mathbb {R}^{dxk}\) that projects entities from the entity space to the relation space; further \(p \in \mathbb {R}^k\).

  3. 3.

    https://github.com/i40-Tools/I4.0KG-Embeddings

  4. 4.

    http://glaros.dtc.umn.edu/gkhome/metis/metis/download.

  5. 5.

    https://github.com/SDM-TIB/semEP.

  6. 6.

    https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html.

References

  1. Adolphs, P., et al.: Structure of the Administration Shell. Status report, ZVEI and VDI (2016)

    Google Scholar 

  2. Ali, M., Jabeen, H., Hoyt, C.T., Lehmann, J.: The keen universe: an ecosystem for knowledge graph embeddings with a focus on reproducibility and transferability (in press)

    Google Scholar 

  3. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA 2007, pp. 1027–1035. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Google Scholar 

  4. Bader, S.R., Grangel-González, I., Tasnim, M., Lohmann, S.: Structuring the industry 4.0 landscape. In: 24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Zaragoza, Spain, 10–13 September, pp. 224–231 (2019)

    Google Scholar 

  5. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6_4

    Chapter  Google Scholar 

  6. Chungoora, N., et al.: Towards the ontology-based consolidation of production-centric standards. Int. J. Prod. Res. 51(2), 327–345 (2013)

    Article  Google Scholar 

  7. Gaertler, M., Erlebach, T.: Clustering, pp. 178–215. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Garofalo, M., Pellegrino, M.A., Altabba, A., Cochez, M.: Leveraging knowledge graph embedding techniques for industry 4.0 use cases. CoRR abs/1808.00434 (2018)

    Google Scholar 

  9. Golshan, B., Halevy, A.Y., Mihaila, G.A., Tan, W.: Data integration: after the teenage years. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, 14–19 May 2017, pp. 101–106 (2017)

    Google Scholar 

  10. Grangel-González, I., et al.: The industry 4.0 standards landscape from a semantic integration perspective. In: 22nd IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Limassol, Cyprus, 12–15 September, pp. 1–8 (2017)

    Google Scholar 

  11. Grangel-González, I., et al.: Alligator: a deductive approach for the integration of industry 4.0 standards. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 272–287. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5_18

    Chapter  Google Scholar 

  12. Grangel-González, I., et al.: Knowledge graphs for semantically integrating cyber-physical systems. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11029, pp. 184–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98809-2_12

    Chapter  Google Scholar 

  13. Hodges, J., García, K., Ray, S.: Semantic development and integration of standards for adoption and interoperability. IEEE Comput. 50(11), 26–36 (2017)

    Article  Google Scholar 

  14. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  15. Kovalenko, O., Euzenat, J.: Semantic matching of engineering data structures. Semantic Web Technologies for Intelligent Engineering Applications, pp. 137–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41490-4_6

    Chapter  Google Scholar 

  16. Lelli, F.: Interoperability of the time of industry 4.0 and the Internet of Things. Future Internet 11(2), 36 (2019)

    Article  MathSciNet  Google Scholar 

  17. Lin, S.W., et al.: The Industrial Internet of Things Volume G1: Reference Architecture. White Paper IIC:PUB:G1:V1.80:20170131, Industrial Internet Consortium (2017)

    Google Scholar 

  18. Lin, S.W., et al.: Reference Architectural Model Industrie 4.0 (RAMI 4.0). Technical report, Industrial Internet Consortium and Plattform Industrie 4.0 (2017)

    Google Scholar 

  19. Lu, Y., Morris, K.C., Frechette, S.: Standards landscape and directions for smart manufacturing systems. In: IEEE International Conference on Automation Science and Engineering, CASE, Gothenburg, Sweden, 24–28 August, pp. 998–1005 (2015)

    Google Scholar 

  20. Monteiro, P., Carvalho, M., Morais, F., Melo, M., Machado, R., Pereira, F.: Adoption of architecture reference models for industrial information management systems. In: International Conference on Intelligent Systems (IS), pp. 763–770. IEEE (2018)

    Google Scholar 

  21. Mountantonakis, M., Tzitzikas, Y.: Large-scale semantic integration of linked data: A survey. ACM Comput. Surv. 52(5), 103:1–103:40 (2019)

    Article  Google Scholar 

  22. Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  23. O’Donovan, P., Leahy, K., Bruton, K., O’Sullivan, D.T.J.: An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities. Journal of Big Data 2(1), 1–26 (2015). https://doi.org/10.1186/s40537-015-0034-z

    Article  Google Scholar 

  24. Palma, G., Vidal, M.-E., Raschid, L.: Drug-target interaction prediction using semantic similarity and edge partitioning. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 131–146. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_9

    Chapter  Google Scholar 

  25. Velasquez, N., Estevez, E., Pesado, P.: Cloud computing, big data and the industry 4.0 reference architectures. J. Comput. Sci. Technol. 18(03), e29 (2018)

    Article  Google Scholar 

  26. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  27. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014)

    Google Scholar 

  28. Zeid, A., Sundaram, S., Moghaddam, M., Kamarthi, S., Marion, T.: Interoperability in smart manufacturing: research challenges. Machines 7(2), 21 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

Ariam Rivas is supported by the German Academic Exchange Service (DAAD). This work has been partially funded by the EU H2020 Projects IASIS (GA 727658) and LAMBDA (GA 809965).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariam Rivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rivas, A., Grangel-González, I., Collarana, D., Lehmann, J., Vidal, ME. (2020). Unveiling Relations in the Industry 4.0 Standards Landscape Based on Knowledge Graph Embeddings. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2020. Lecture Notes in Computer Science(), vol 12392. Springer, Cham. https://doi.org/10.1007/978-3-030-59051-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59051-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59050-5

  • Online ISBN: 978-3-030-59051-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics