Skip to main content

Signatures with Tight Multi-user Security from Search Assumptions

  • Conference paper
  • First Online:
Computer Security – ESORICS 2020 (ESORICS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12309))

Included in the following conference series:

Abstract

We construct two tightly secure signature schemes based on the computational Diffie-Hellman (CDH) and factoring assumptions in the random oracle model. Our schemes are proven secure in the multi-user setting, and their security loss is constant and does not depend on the number of users or signing queries. They are the first schemes that achieve this based on standard search assumptions, as all existing schemes we are aware of are either based on stronger decisional assumptions, or proven tightly secure in the less realistic single-user setting. Under a concrete estimation, in a truly large scale, the cost of our CDH-based scheme is about half of Schnorr and DSA (in terms of signature size and running time for signing).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Usually, “\(k\)-bit security” means that there is no adversary can break the scheme with success ratio larger than \(2^{-k}\) (see discussions in [7, 17]).

  2. 2.

    Nowadays many applications involve billions of users. For instance, Facebook has about 2 billion active users daily, according to https://about.fb.com/company-info/.

  3. 3.

    Taken from the benchmarks in https://github.com/miracl/MIRACL/blob/master/docs/miracl-explained/benchmarks.md (2020-03-26).

  4. 4.

    \(\mathsf {SIG[ID]} \)is the signature scheme constructed from a three-move identification scheme \(\textsf {ID}\) via the Fiat-Shamir transformation.

  5. 5.

    We use the result derived in the reduction, not the statement of the lemma, as they are not the same.

References

  1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_34

    Chapter  Google Scholar 

  2. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 669–699. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_23

    Chapter  Google Scholar 

  3. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_21

    Chapter  Google Scholar 

  4. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_26

    Chapter  Google Scholar 

  5. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_10

    Chapter  Google Scholar 

  6. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_15

    Chapter  Google Scholar 

  7. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_24

    Chapter  Google Scholar 

  8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

    Google Scholar 

  9. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_34

    Chapter  Google Scholar 

  10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  11. Bernstein, D.J.: Proving tight security for Rabin-Williams signatures. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 70–87. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_5

    Chapter  Google Scholar 

  12. Bernstein, D.J.: Multi-user Schnorr security, revisited. Cryptology ePrint Archive, Report 2015/996 (2015). http://eprint.iacr.org/2015/996

  13. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from Chameleon hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_12

    Chapter  Google Scholar 

  14. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_23

    Chapter  Google Scholar 

  15. Blocki, J., Lee, S.: On the multi-user security of short Schnorr signatures. Cryptology ePrint Archive, Report 2019/1105 (2019). https://eprint.iacr.org/2019/1105

  16. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998

    Google Scholar 

  17. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness II: practical issues in cryptography. Cryptology ePrint Archive, Report 2016/360 (2016). http://eprint.iacr.org/2016/360

  18. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

    Chapter  Google Scholar 

  19. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight security reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_31

    Chapter  Google Scholar 

  20. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly efficient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 767–797. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_25

    Chapter  Google Scholar 

  21. Boer, B.: Diffie-Hellman is as strong as discrete log for certain primes. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 530–539. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_38

    Chapter  Google Scholar 

  22. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC) DSA signatures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1651–1662. ACM Press, October 2016

    Google Scholar 

  23. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Cryptology ePrint Archive, Report 2006/165 (2006). http://eprint.iacr.org/2006/165

  24. Galbraith, S.D., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-user setting. Inf. Process. Lett. 83(5), 263–266 (2002). https://doi.org/10.1016/S0020-0190(01)00338-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_1

    Chapter  Google Scholar 

  26. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_8

    Chapter  Google Scholar 

  27. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_4

    Chapter  Google Scholar 

  28. Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight reductions to the Diffie-Hellman problems. J. Cryptol. 20(4), 493–514 (2007). https://doi.org/10.1007/s00145-007-0549-3

    Article  MathSciNet  MATH  Google Scholar 

  29. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988). https://doi.org/10.1137/0217017

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo, F., Chen, R., Susilo, W., Lai, J., Yang, G., Mu, Y.: Optimal security reductions for unique signatures: bypassing impossibilities with a counterexample. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 517–547. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_18

    Chapter  Google Scholar 

  31. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_35

    Chapter  Google Scholar 

  32. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_2

    Chapter  Google Scholar 

  33. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 537–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_32

    Chapter  Google Scholar 

  34. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. J. Cryptol. 31(1), 276–306 (2018). https://doi.org/10.1007/s00145-017-9257-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight security reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp. 155–164. ACM Press, October 2003

    Google Scholar 

  36. Kerry, C.F., Director, C.R.: FIPS PUB 186–4 federal information processing standards publication digital signature standard (DSS) (2013)

    Google Scholar 

  37. Kiltz, E., Loss, J., Pan, J.: Tightly-secure signatures from five-move identification protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 68–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_3

    Chapter  Google Scholar 

  38. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_2

    Chapter  Google Scholar 

  39. Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_21

    Chapter  Google Scholar 

  40. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes. J. Cryptol. 15(1), 1–18 (2002). https://doi.org/10.1007/s00145-001-0005-8

    Article  MathSciNet  MATH  Google Scholar 

  41. Morgan, A., Pass, R.: On the security loss of unique signatures. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 507–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_19

    Chapter  MATH  Google Scholar 

  42. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu, G., Lai, J.-C., Guo, F.-C., Susilo, W., Zhang, F.-T.: Tightly secure public-key cryptographic schemes from one-more assumptions. J. Comput. Sci. Technol. 34(6), 1366–1379 (2019). https://doi.org/10.1007/s11390-019-1980-2

    Article  Google Scholar 

  44. Zhang, X., Liu, S., Gu, D., Liu, J.K.: A generic construction of tightly secure signatures in the multi-user setting. Theor. Comput. Sci. 775, 32–52 (2019). https://doi.org/10.1016/j.tcs.2018.12.012

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Ringerud .

Editor information

Editors and Affiliations

A On the Multi-user Security of DSA

A On the Multi-user Security of DSA

We show why it is difficult to show tight implication from the single-user security to the multi-user security for \(\mathsf {DSA}\). We first recall the scheme. Let p be an L-bit prime, and q be an N-bit prime such that \(q\mid (p-1)\). For specifications on L and N, see the \(\mathsf {DSA}\) documentation [36]. Let g be a generator of a subgroup of order q in \(\mathbb {Z}_p^*\). The \({\mathsf {Gen}},{\mathsf {Sign}}\) and \({\mathsf {Ver}}\) can then be described as follows.

figure g

Different to the \(\mathsf {Schnorr}\) signature, given a valid signature \(\sigma :=(R,s)\) under public key X, it is not possible to convert it to a valid signature under public key \(X\cdot g^{a_i}\) for using methods in [12, 38], since we do not have the discrete log of R, namely, \(r\in \mathbb {Z}_q^*\).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J., Ringerud, M. (2020). Signatures with Tight Multi-user Security from Search Assumptions. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds) Computer Security – ESORICS 2020. ESORICS 2020. Lecture Notes in Computer Science(), vol 12309. Springer, Cham. https://doi.org/10.1007/978-3-030-59013-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59013-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59012-3

  • Online ISBN: 978-3-030-59013-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics