Skip to main content

Potential Uses of Bioactive Compounds of Medicinal Plants and Their Mode of Action in Several Human Diseases

  • Chapter
  • First Online:
Medicinal and Aromatic Plants

Abstract

Herbal medicines are the prime source of medical care for a great proportion of the population of the developing world. The control of human diseases by the use of plant products has several advantages besides being cheap to produce; they are biodegradable and readily available. Majority of the plant extracts have been found effective to combat human pathogenic bacteria without toxic side effects and environmental hazards. In the recent past, microbial infections such as candidiasis, tuberculosis, cryptococcosis, and salmonellosis have been increased partly due to HIV/AIDS pandemic. There is renewed interest in the search for plants with antimicrobial activity leading to various plants including Azadirachta indica, Camellia sinensis, Hypericum perforatum, and Allium sativum among others being investigated, and they displayed considerable antimicrobial activity. The possible mechanism of action of bioactive compounds of medicinal plants in traditional medicine has been demonstrated. Mechanism of action of these compounds in humans can largely be attributed to cytotoxicity, gene silencing, and immunopotentiation. The aim of the present chapter is to enlighten the potential medicinal properties of bioactive compounds of medicinal plants and also highlight their mode of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aftab T, Masroor M, Khan A, Idrees M, Naeem M (2010) Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. J Crop Sci Biotechnol 13(3):183–188

    Article  Google Scholar 

  • Ahmad I, Mehmood Z, Mohammad F (1998) Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol 62(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Akbar S, Khan SA, Masood A, Iqbal M (2010) Use of Strychnos nuxvomica (Azraqi) seeds in Unani system of medicine: role of detoxification. Afr J Tradit Complement Altern Med 7(4):286–290

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Snafi AE (2015) The constituents and pharmacological properties of Calotropis procera-an overview. Int J Pharm Sci Rev Res 5(3):259–275

    Google Scholar 

  • Akram M, Uzair M, Malik NS, Mahmood A, Sarwer N, Madni A and Asif HM (2011) Mentha arvensis Linn.: A review article. J Med Plant Res 5(18):4499–4503

    Google Scholar 

  • Ansari IA, Akhtar MS (2019) Current insights on the role of Terpenoids as anticancer agents: a perspective on cancer prevention and treatment. In: Natural bio-active compounds. Springer, Singapore, pp 53–80

    Chapter  Google Scholar 

  • Arthur H, Joubert E, De Beer D, Malherbe CJ, Witthuhn RC (2011) Phenylethanoid glycosides as major antioxidants in Lippia multiflora herbal infusion and their stability during steam pasteurisation of plant material. Food Chem 127(2):581–588

    Article  CAS  PubMed  Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manag 10(6):421–452

    Article  CAS  Google Scholar 

  • Barnes CC, Smalley MK, Manfredi KP, Kindscher K, Loring H, Sheeley DM (2003) Characterization of an anti-tuberculosis resin glycoside from the prairie medicinal plant Ipomoea leptophylla. J Nat Prod 66(11):1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Bartnik M, Facey PC (2017) Glycosides. In: Pharmacognosy. Academic Press, Elsevier, USA, pp 101–161

    Google Scholar 

  • Bernhoft A (2010) A brief review on bioactive compounds in plants. Bioactive compounds in plants-benefits and risks for man and animals. 50, pp. 11–17

    Google Scholar 

  • Booth JK, Bohlmann J (2019) Terpenes in Cannabis sativa–from plant genome to humans. Plant Sci 284:67–72

    Article  CAS  PubMed  Google Scholar 

  • Bunkar AR (2017) Therapeutic uses of Rauwolfia serpentina. Int J Adv Sci Res 2:23–26

    Google Scholar 

  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadwick DJ, Marsh J (eds) (2008) Bioactive compounds from plants, Vol 154. Wiley, USA

    Google Scholar 

  • Choudhary S, Zehra A, Naeem M, Khan MMA, Aftab T (2020) Effects of boron toxicity on growth, oxidative damage, antioxidant enzymes and essential oil fingerprinting in Mentha arvensis and Cymbopogon flexuosus. Chem Biol Technol Agric 7(1):1–11

    Article  CAS  Google Scholar 

  • Cox-Georgian D, Ramadoss N, Dona C, Basu C (2019) Therapeutic and medicinal uses of terpenes. In: Medicinal plants. Springer, Cham, pp 333–359

    Chapter  Google Scholar 

  • Das K, Tiwari RKS, Shrivastava DK (2010) Techniques for evaluation of medicinal plant products as antimicrobial agents: current methods and future trends. J Med Plants Res 4(2):104–111

    Google Scholar 

  • Dayanandan P, Ponsamuel J, Gupta PD, Yamamoto H (2000) Ultrastructure of terpenoid secretory cells of neem (Azadirachta indica a. Juss.). In: Gupta PD, Yamamoto H (eds) Electron microscopy in medicine and biology. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp 179–195

    Google Scholar 

  • Delazar A, Gibbons S, Kosari AR, Nazemiyeh H, Modarresi M, Nahar L, Sarker SD (2006) Flavone C-glycosides and cucurbitacin glycosides from Citrullus colocynthis. DARU J Pharm Sci 14(3):109–114

    CAS  Google Scholar 

  • Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJ, Marschall M (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47(6):804–811

    Article  CAS  PubMed  Google Scholar 

  • El-Seedi HR, Burman R, Mansour A, Turki Z, Boulos L, Gullbo J, Göransson U (2013) The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: discovery of an active cardiac glycoside from Urginea maritima. J Ethnopharmacol 145(3):746–757

    Article  PubMed  Google Scholar 

  • Gajalakshmi S, Vijayalakshmi S, Devi RV (2013) Pharmacological activities of Catharanthus roseus: a perspective review. Int J Pharm Bio Sci 4(2):431–439

    Google Scholar 

  • Ghareeb DA, Abd El-Wahab AE, Sarhan EE, Abu-Serie MM, El Demellawy MA (2013) Biological assessment of Berberis vulgaris and its active constituent, berberine: antibacterial, antifungal and anti-hepatitis C virus (HCV) effect. J Med Plants Res 7(21):1529–1536

    Google Scholar 

  • Gonçalves S, Romano A (2016) The medicinal potential of plants from the genus Plantago (Plantaginaceae). Ind Crop Prod 83:213–226

    Article  CAS  Google Scholar 

  • Greenwell M, Rahman PKSM (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6(10):4103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guesmi F, Khantouche L, Mehrez A, Bellamine H, Landoulsi A (2018) Histopathological and biochemical effects of thyme essential oil on H2O2 stress in heart tissues. Heart Lung Circul 20:1–7

    Google Scholar 

  • Guimarães AG, Serafini MR, Quintans-Júnior LJ (2014) Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert Opin Ther Pat 24(3):243–265

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Chaphalkar SR (2016) Terpenoids from three medicinal plants and their potential anti-inflammatory and immunosuppressive activity on human whole blood and peripheral blood mononuclear cells. Asian J Ethnopharmacol Med Foods 2:13–17

    Google Scholar 

  • He Y, Khan M, Yang J, Yao M, Yu S, Gao H (2018) Proscillaridin A induces apoptosis, inhibits STAT3 activation and augments doxorubicin toxicity in prostate cancer cells. Int J Med Sci 15(8):832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henneh D (2013) The antimicrobial activities of the stem extract of Strophanthus gratus, Apocynaceae (Doctoral dissertation)

    Google Scholar 

  • Hosseinzadeh S, Jafarikukhdan A, Hosseini A, Armand R (2015a) The application of medicinal plants in traditional and modern medicine: a review of Thymus vulgaris. Int J Clin Med 6(09):635

    Google Scholar 

  • Hosseinzadeh S, Jafarikukhdan A, Hosseini A, Armand R (2015b) The application of medicinal plants in traditional and modern medicine: a review of Thymus vulgaris. Int J Clin Med 6(09):635

    Article  Google Scholar 

  • Huang FC, Kutchan TM (2000) Distribution of morphinan and benzo [c] phenanthridine alkaloid gene transcript accumulation in Papaver somniferum. Phytochemistry 53(5):555–564

    Article  CAS  PubMed  Google Scholar 

  • Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei W et al (2018) Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int J Biol Sci 14(3):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idrees M, Naeem M, Alam M, Aftab T, Hashmi N, Khan MMA, Varshney L (2011) Utilizing the γ-irradiated sodium alginate as a plant growth promoter for enhancing the growth, physiological activities, and alkaloids production in Catharanthus roseus L. Agric Sci China 10(8):1213–1221

    Google Scholar 

  • Imanshahidi M, Hosseinzadeh H (2008) Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res 22(8):999–1012

    Article  CAS  PubMed  Google Scholar 

  • Johan H (2018) Digitoxin has specific properties for potential use to treat cancer and inflammatory diseases. Res Rev Health Care Open Acc J 2(3):1–3

    Google Scholar 

  • Juyal D, Thawani V, Thaledi S, Joshi M (2014) Ethnomedical properties of Taxus wallichiana zucc.(Himalayan yew). J Tradit Complement Med 4(3):159–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandi S, Godishala V, Rao P, Ramana KV (2015) Biomedical significance of terpenes: an insight. Biomedicine 3(1):8–10

    CAS  Google Scholar 

  • Karamoddini MK, Emami SA, Ghannad MS, Sani EA, Sahebkar A (2011) Antiviral activities of aerial subsets of Artemisia species against herpes simplex virus type 1 (HSV1) in vitro. Asian Biomed 5(1):63–68

    Article  Google Scholar 

  • Khan H, Amin S, Patel S (2018a) Targeting BDNF modulation by plant glycosides as a novel therapeutic strategy in the treatment of depression. Life Sci 196:18–27

    Article  CAS  PubMed  Google Scholar 

  • Khan H, Nabavi SM, Sureda A, Mehterov N, Gulei D, Berindan-Neagoe I et al (2018b) Therapeutic potential of songorine, a diterpenoid alkaloid of the genus Aconitum. Eur J Med Chem 153:29–33

    Article  CAS  PubMed  Google Scholar 

  • Kim WS, Choi WJ, Lee S, Kim WJ, Lee DC, Sohn UD et al (2015) Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L. Korean J Physiol Pharmacol 19(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Rathi B, Rani A, Bhatnagar S (2013) Rauvolfia serpentina L. Benth. ex Kurz.: phytochemical, pharmacological and therapeutic aspects. Int J Pharm Sci Rev Res 23(2):348–355

    Google Scholar 

  • Lee ER, Kang GH, Cho SG (2007) Effect of flavonoids on human health: old subjects but new challenges. Recent Pat Biotechnol 1(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Naeem M, Aftab T, Idrees M, Alam MM, Khan MMA, Uddin M (2017) Plant efficacy and alkaloids production in Sadabahar (Catharanthus roseus L.): role of potent PGRs and mineral nutrients. In: Catharanthus roseus. Springer, Cham, pp 35–57

    Chapter  Google Scholar 

  • Nagini S (2014) Neem limonoids as anticancer agents: modulation of cancer hallmarks and oncogenic signaling. In: The enzymes, vol 36. Academic Press, Elsevier, USA, pp 131–147

    Google Scholar 

  • Negi JS, Bisht VK, Bhandari AK, Sundriyal RC (2012) Determination of mineral contents of Digitalis purpurea L. and Digitalis lanata Ehrh. J Soil Sci Plant Nutr 12(3):463–470

    Google Scholar 

  • Nenaah G (2013) Antimicrobial activity of Calotropis procera Ait.(Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World J Microbiol Biotechnol 29(7):1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Nuutinen T (2018) Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 157:198–228

    Article  CAS  PubMed  Google Scholar 

  • Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B (2014) Phenolics in human health. Int J Chem Eng Appl 5(5):393

    CAS  Google Scholar 

  • Passos MDS, Carvalho Junior ARD, Boeno SI, Virgens LDL, Calixto SD, Ventura TLB et al (2019) Terpenoids isolated from Azadirachta indica roots and biological activities. Rev Bras 29(1):40–45

    CAS  Google Scholar 

  • Patel S (2016) Plant-derived cardiac glycosides: role in heart ailments and cancer management. Biomed Pharmacother 84:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Patel K, Laloo D, Singh GK, Gadewar M, Patel DK (2017) A review on medicinal uses, analytical techniques and pharmacological activities of Strychnos nux-vomica Linn.: a concise report. Chin J Integr Med:1–13

    Google Scholar 

  • Radulovic NS, Blagojevic PD, Stojanovic-Radic ZZ, Stojanovic NM (2013) Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 20(7):932–952

    CAS  PubMed  Google Scholar 

  • Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Herbal drugs: ethnomedicine to modern medicine. Springer, Berlin, Heidelberg, pp 7–32

    Chapter  Google Scholar 

  • Rolta R, Salaria D, Kumar V (2020) Phytocompounds of Rheum emodi, Thymus serpyllum and Artemisia annua inhibit COVID-19 binding to ACE2 receptor: In silico approach

    Google Scholar 

  • Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY (2014) Antiartherosclerotic effects of plant flavonoids. Biomed Res Int 2014. Article ID 480258

    Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8(1):1–10

    CAS  PubMed  Google Scholar 

  • Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1(6):168–182

    Google Scholar 

  • Schmeller T, Wink M (1998) Utilization of alkaloids in modern medicine. In: Alkaloids. Springer, Boston, pp 435–459

    Chapter  Google Scholar 

  • Shaikh S, Yaacob HB, Rahim ZHA (2014) Prospective role in treatment of major illnesses and potential benefits as a safe insecticide and natural food preservative of mint (Mentha spp.): a review. Asian J Biomed Pharm Sci 4:1–12

    Article  CAS  Google Scholar 

  • Shakya AK (2016) Medicinal plants: future source of new drugs. Int J Herbal Med 4(4):59–64

    Google Scholar 

  • Singh I (2017) Antimicrobials in higher plants: classification, mode of action and bioactivities. Chem Biol Lett 4(1):48–62

    CAS  Google Scholar 

  • Singh B, Bhat TK, Singh B (2003) Potential therapeutic applications of some antinutritional plant secondary metabolites. J Agric Food Chem 51(19):5579–5597

    Article  CAS  PubMed  Google Scholar 

  • Takos AM, Rook F (2013) Towards a molecular understanding of the biosynthesis of Amaryllidaceae alkaloids in support of their expanding medical use. Int J Mol Sci 14(6):11713–11741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor L (2000) Plant based drugs and medicines. Rain Tree Nutrition Inc, USA, pp 1–5

    Google Scholar 

  • Tiwari P (2016) Recent advances and challenges in trichome research and essential oil biosynthesis in Mentha arvensis L. Ind Crop Prod 82:141–148

    Article  CAS  Google Scholar 

  • Tiwari SC, Husain NISREEN (2017) Biological activities and role of flavonoids in human health–a. Indian J Sci Res 12(2):193–196

    CAS  Google Scholar 

  • Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5(3):93

    Article  CAS  PubMed Central  Google Scholar 

  • Van Wyk BE, Wink M (2018) Medicinal plants of the world. CABI, UK

    Google Scholar 

  • Visweswari G, Christopher R, Rajendra W (2013) Phytochemical screening of active secondary metabolites present in Withania somnifera root: role in traditional medicine. Int J Pharm Sci Res 4(7):2770

    Google Scholar 

  • Vollekova A, Košťálová D, Sochorova R (2001) Isoquinoline alkaloids from Mahonia aquifolium stem bark are active against Malassezia spp. Folia Microbiol 46(2):107

    Article  CAS  Google Scholar 

  • Wadood A, Ghufran M, Jamal SB, Naeem M, Khan A, Ghaffar R (2013) Phytochemical analysis of medicinal plants occurring in local area of Mardan. Biochem Anal Biochem 2(4):1–4

    Article  Google Scholar 

  • Wink M (2007) Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. Alkaloids Chem Biol 64:1–47

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2(3):251–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Guleria P (2012) Steviol glycosides from Stevia: biosynthesis pathway review and their application in foods and medicine. Crit Rev Food Sci Nutr 52(11):988–998

    Article  CAS  PubMed  Google Scholar 

  • Zarei A, Changizi-Ashtiyani S, Taheri S, Ramezani M (2015) A quick overview on some aspects of endocrinological and therapeutic effects of Berberis vulgaris L. Avicenna J Phytomed 5(6):485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zehra A, Choudhary S, Mukarram M, Naeem M, Khan MMA, Aftab T (2020) Impact of long-term copper exposure on growth, photosynthesis, antioxidant defence system and artemisinin biosynthesis in soil-grown Artemisia annua genotypes. Bull Environ Contam Toxicol 104:609–618

    Google Scholar 

  • Zhou J, Chan L, Zhou S (2012) Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 19(21):3523–3531

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, S. et al. (2021). Potential Uses of Bioactive Compounds of Medicinal Plants and Their Mode of Action in Several Human Diseases. In: Aftab, T., Hakeem, K.R. (eds) Medicinal and Aromatic Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-58975-2_5

Download citation

Publish with us

Policies and ethics