Skip to main content

Adaptive CP-Based Lagrangian Relaxation for TSP Solving

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2020)

Abstract

M. Sellmann showed that CP-based Lagrangian relaxation gave good results but the interactions between the filtering algorithms and the Lagrangian multipliers were quite difficult to understand. In other words, it is difficult to determine when filtering algorithms should be triggered. There are two main reasons for this: the best multipliers do not lead to the best filtering and each filtering disrupts the solving of the Lagrangian multiplier problem. In this paper, we study these interactions for the Traveling Salesman Problem (TSP) because the resolution of the TSP in CP is mainly based on a Lagrangian relaxation. We propose to match the calls to the filtering algorithms with the strong variations of the objective value. In addition, we try to avoid oscillations of the objective function. We introduce Scope Sizing Subgradient algorithm, denoted by SSSA, which is an adaptive algorithm, that implements this idea. We experimentally show the advantage of this approach by considering different search strategies or additional constraints. A gain of a factor of two in time is observed compared to the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Normally, in CP, when \(F_2\), a FA, is added to \(F_1\), another FA, all values eliminated by \(F_1\) are also eliminated by the combination of \(F_1\) and \(F_2\).

References

  1. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  2. Beasley, J.E.: Lagrangian Relaxation, Chap. 6, pp. 243–303. Wiley, New York (1993)

    Google Scholar 

  3. Benchimol, P., van Hoeve, W.J., Régin, J., Rousseau, L., Rueher, M.: Improved filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012). https://doi.org/10.1007/s10601-012-9119-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergman, D., Cire, A.A., van Hoeve, W.-J.: Improved constraint propagation via Lagrangian decomposition. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 30–38. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_3

    Chapter  Google Scholar 

  5. Cambazard, H., Fages, J.-G.: New filtering for AtMostNValue and its weighted variant: a Lagrangian approach. Constraints 20(3), 362–380 (2015). https://doi.org/10.1007/s10601-015-9191-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: ICLP, vol. 97, p. 104 (1997)

    Google Scholar 

  7. Demassey, S.: Compositions and hybridizations for applied combinatorial optimization. Habilitation à Diriger des Recherches (2017)

    Google Scholar 

  8. Ducomman, S., Cambazard, H., Penz, B.: Alternative filtering for the weighted circuit constraint: comparing lower bounds for the TSP and solving TSPTW. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA, 12–17 February 2016, pp. 3390–3396 (2016)

    Google Scholar 

  9. Fages, J.-G., Lorca, X., Rousseau, L.-M.: The salesman and the tree: the importance of search in CP. Constraints 21(2), 145–162 (2014). https://doi.org/10.1007/s10601-014-9178-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Focacci, F., Lodi, A., Milano, M.: Embedding relaxations in global constraints for solving TSP and TSPTW. Ann. Math. Artif. Intell. 34(4), 291–311 (2002). https://doi.org/10.1023/A:1014492408220

    Article  MathSciNet  MATH  Google Scholar 

  11. Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW. INFORMS J. Comput. 14(4), 403–417 (2002)

    Article  MathSciNet  Google Scholar 

  12. Fontaine, D., Michel, L., Van Hentenryck, P.: Constraint-based Lagrangian relaxation. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 324–339. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_25

    Chapter  Google Scholar 

  13. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13(1), 117–156 (2002)

    Article  MathSciNet  Google Scholar 

  14. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: Part II. Math. Program. 1(1), 6–25 (1971). https://doi.org/10.1007/BF01584070

    Article  MATH  Google Scholar 

  15. Isoart, N., Régin, J.C.: Integration of structural constraints into TSP models. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, pp. 284–299. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_17

    Chapter  Google Scholar 

  16. Khemmoudj, M.O.I., Bennaceur, H., Nagih, A.: Combining arc-consistency and dual Lagrangean relaxation for filtering CSPs. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 258–272. Springer, Heidelberg (2005). https://doi.org/10.1007/11493853_20

    Chapter  MATH  Google Scholar 

  17. Kilby, P., Shaw, P.: Vehicle routing. In: Foundations of Artificial Intelligence, vol. 2, pp. 801–836. Elsevier (2006)

    Google Scholar 

  18. Malapert, A., Régin, J., Rezgui, M.: Embarrassingly parallel search in constraint programming. J. Artif. Intell. Res. (JAIR) 57, 421–464 (2016)

    Article  MathSciNet  Google Scholar 

  19. Menana, J.: Automates et programmation par contraintes pour la planification de personnel. Ph.D. thesis, Université de Nantes (2011)

    Google Scholar 

  20. Palmieri, A., Régin, J.-C., Schaus, P.: Parallel strategies selection. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 388–404. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_25

    Chapter  Google Scholar 

  21. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transp. Sci. 32(1), 12–29 (1998)

    Article  Google Scholar 

  22. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_45

    Chapter  Google Scholar 

  23. Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  Google Scholar 

  24. Sellmann, M.: Theoretical foundations of CP-based Lagrangian relaxation. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 634–647. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_46

    Chapter  MATH  Google Scholar 

  25. Sellmann, M., Fahle, T.: Constraint programming based Lagrangian relaxation for the automatic recording problem. Ann. Oper. Res. 118(1–4), 17–33 (2003). https://doi.org/10.1023/A:1021845304798

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Isoart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Isoart, N., Régin, JC. (2020). Adaptive CP-Based Lagrangian Relaxation for TSP Solving. In: Hebrard, E., Musliu, N. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2020. Lecture Notes in Computer Science(), vol 12296. Springer, Cham. https://doi.org/10.1007/978-3-030-58942-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58942-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58941-7

  • Online ISBN: 978-3-030-58942-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics