Skip to main content

Synchronization Analysis in Models of Coupled Oscillators

  • Conference paper
  • First Online:
  • 1470 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12249))

Abstract

The present work deals with the analysis of the synchronization possibility in chaotic oscillators, either completely or per phase, using a coupling force among them, so they can be used in attention systems. The neural models used were Hodgkin-Huxley, Hindmarsh-Rose, Integrate-and-Fire, and Spike-Response-Model. Discrete models such as Aihara, Rulkov, Izhikevic, and Courbage-Nekorkin-Vdovin were also evaluated. The dynamical systems’ parameters were varied in the search for chaos, by analyzing trajectories and bifurcation diagrams. Then, a coupling term was added to the models to analyze synchronization in a couple, a vector, and a lattice of oscillators. Later, a lattice with variable parameters is used to simulate different biological neurons. Discrete models did not synchronize in vectors and lattices, but the continuous models were successful in all stages, including the Spike Response Model, which synchronized without the use of a coupling force, only by the synchronous time arrival of presynaptic stimuli. However, this model did not show chaotic characteristics. Finally, in the models in which the previous results were satisfactory, lattices were studied where the coupling force between neurons varied in a non-random way, forming clusters of oscillators with strong coupling to each other, and low coupling with others. The possibility of identifying the clusters was observed in the trajectories and phase differences among all neurons in the reticulum detecting where it occurred and where there was no synchronization. Also, the average execution time of the last stage showed that the fastest model is the Integrate-and-Fire.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Phys. Lett. A 144(6–7), 333–340 (1990)

    Article  MathSciNet  Google Scholar 

  2. Breve, F.: Aprendizado de máquina utilizando dinâmica espaçotemporal em redes complexas. Universidade de São Paulo (Tese de Doutorado), São Carlos (2010)

    Google Scholar 

  3. Breve, F.A., Zhao, L., Quiles, M.G., Macau, E.E.: Chaotic phase synchronization for visual selection. In: International Joint Conference on Neural Networks, IJCNN 2009, pp. 383–390. IEEE (2009)

    Google Scholar 

  4. Casado, J.M.: Synchronization of two Hodgkin-Huxley neurons due to internal noise. Phys. Lett. A 310(5–6), 400–406 (2003)

    Article  MathSciNet  Google Scholar 

  5. Cessac, B.: A view of neural networks as dynamical systems. Int. J. Bifurcat. Chaos 20(06), 1585–1629 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chen, B., Li, P., Sun, C., Wang, D., Yang, G., Lu, H.: Multi attention module for visual tracking. Pattern Recogn. 87, 80–93 (2019)

    Article  Google Scholar 

  7. Courbage, M., Nekorkin, V., Vdovin, L.: Chaotic oscillations in a map-based model of neural activity. Chaos Interdiscip. J. Nonlinear Sci. 17(4), 043109 (2007)

    Article  MathSciNet  Google Scholar 

  8. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18(1), 193–222 (1995)

    Article  Google Scholar 

  9. Gerstner, W.: A framework for spiking neuron models: the spike response model. In: Moss, F., Gielen, S. (eds.) Handbook of Biological Physics, vol. 4, pp. 469–516. Elsevier, Amsterdam (2001)

    Google Scholar 

  10. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  11. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)

    Article  Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  13. Ibarz, B., Casado, J.M., Sanjuán, M.A.: Map-based models in neuronal dynamics. Phys. Rep. 501(1–2), 1–74 (2011)

    Article  Google Scholar 

  14. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194 (2001)

    Article  Google Scholar 

  15. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  16. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  17. Lapicque, L.: Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. Journal de Physiologie et de Pathologie Generalej 9, 620–635 (1907)

    Google Scholar 

  18. von der Malsburg, C.: The correlation theory of brain function. Technical report, MPI (1981)

    Google Scholar 

  19. Niu, Y., Zhang, H., Zhang, M., Zhang, J., Lu, Z., Wen, J.R.: Recursive visual attention in visual dialog. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6679–6688 (2019)

    Google Scholar 

  20. Nobukawa, S., Nishimura, H., Iamanishi, T., Liu, J.Q.: Analysis of chaotic resonance in Izhikevic neuron model. PLoS ONE 10(9), e0138919 (2015)

    Article  Google Scholar 

  21. Pankratova, E.V., Polovinkin, A.V., Mosekilde, E.: Noise suppression in a neuronal Hodgkin-Huxley model. Modern Prob. Stat. Phys. 3, 107–116 (2004)

    Google Scholar 

  22. Pikovsky, A., Rosenblum, M., Kurths, J., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  23. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65(4), 041922 (2002)

    Article  MathSciNet  Google Scholar 

  24. Terman, D., Wang, D.: Global competition and local cooperation in a network of neural oscillators. Physica D 81(1–2), 148–176 (1995)

    Article  MathSciNet  Google Scholar 

  25. Von Der Malsburg, C., Schneider, W.: A neural cocktail-party processor. Biol. Cybern. 54(1), 29–40 (1986). https://doi.org/10.1007/BF00337113

    Article  Google Scholar 

  26. Wang, D.: The time dimension for scene analysis. IEEE Trans. Neural Networks 16(6), 1401–1426 (2005)

    Article  Google Scholar 

  27. Wang, W., et al.: Learning unsupervised video object segmentation through visual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3064–3074 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Toso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toso, G., Breve, F. (2020). Synchronization Analysis in Models of Coupled Oscillators. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics