Skip to main content

Applied Statistical Model Checking for a Sensor Behavior Analysis

  • Conference paper
  • First Online:
Quality of Information and Communications Technology (QUATIC 2020)

Abstract

The analysis of sensors’ behavior becomes one of the essential challenges due to the growing use of these sensors for making a decision in IoT systems. The paper proposes an approach for a formal specification and analysis of such behavior starting from existing sensor traces. A model that embodies the sensor measurements over the time in the form of stochastic automata is built, then temporal properties are feed to Statistical Model Checker to simulate the learned model and to perform analysis. LTL properties are employed to predict sensors’ readings in time and to check the conformity of sensed data with the sensor traces in order to detect any abnormal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html.

  2. 2.

    http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en.

References

  1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Modeling Comput. Simul. 28(1), 1–39 (2018). https://doi.org/10.1145/3158668

    Article  MathSciNet  Google Scholar 

  2. Al-Turjman, F., Malekloo, A.: Smart parking in IoT-enabled cities: a survey. Sustain. Cities Soc. 49, 101608 (2019)

    Article  Google Scholar 

  3. Alur, R., Henzinger, T.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993). https://doi.org/10.1006/inco.1993.1025

    Article  MathSciNet  MATH  Google Scholar 

  4. Basu, A., et al.: Rigorous component-based system design using the BIP framework. IEEE Softw. 28(3), 41–48 (2011)

    Article  Google Scholar 

  5. Beaulaton, D., Said, N.B., Cristescu, I., Sadou, S.: Security analysis of IoT systems using attack trees. In: Albanese, M., Horne, R., Probst, C.W. (eds.) GraMSec 2019. LNCS, vol. 11720, pp. 68–94. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36537-0_5

    Chapter  Google Scholar 

  6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29(2), 93–104 (2000). https://doi.org/10.1145/335191.335388

    Article  Google Scholar 

  7. Daissaoui, A., Boulmakoul, A., Karim, L., Lbath, A.: IoT and big data analytics for smart buildings: a survey. Procedia Comput. Sci. 170, 161–168 (2020). https://doi.org/10.1016/j.procs.2020.03.021

    Article  Google Scholar 

  8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

    Article  Google Scholar 

  9. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Prieditis, A., Russell, S. (eds.) Machine Learning Proceedings 1995, pp. 194–202. Morgan Kaufmann, San Francisco (1995). https://doi.org/10.1016/B978-1-55860-377-6.50032-3

  10. Franco, J.M., Correia, F., Barbosa, R., Zenha-Rela, M., Schmerl, B., Garlan, D.: Improving self-adaptation planning through software architecture-based stochastic modeling. J. Syst. Softw. 115, 42–60 (2016). https://doi.org/10.1016/j.jss.2016.01.026

    Article  Google Scholar 

  11. Giannoni, F., Mancini, M., Marinelli, F.: Anomaly Detection Models for IoT Time Series Data. ArXiv abs/1812.00890 (2018)

    Google Scholar 

  12. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24(9–10), 1641–1650 (2003). https://doi.org/10.1016/S0167-8655(03)00003-5

    Article  MATH  Google Scholar 

  13. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_8

    Chapter  MATH  Google Scholar 

  14. Hill, D.J., Minsker, B.S., Amir, E.: Real-time Bayesian anomaly detection in streaming environmental data: REAL-TIME BAYESIAN ANOMALY DETECTION. Water Resources Res. 45(4) (2009). https://doi.org/10.1029/2008WR006956

  15. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

  16. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: ESANN (2015)

    Google Scholar 

  17. Mediouni, B.L., Nouri, A., Bozga, M., Dellabani, M., Legay, A., Bensalem, S.: \(\cal{S}\)BIP 2.0: statistical model checking stochastic real-time systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 536–542. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_33

    Chapter  Google Scholar 

  18. Mercaldo, F., Martinelli, F., Santone, A.: Real-Time SCADA attack detection by means of formal methods. In: 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 231–236. IEEE, Napoli, Italy, June 2019. https://doi.org/10.1109/WETICE.2019.00057

  19. Naskos, A., Gounaris, A., Mouratidis, H., Katsaros, P.: Online analysis of security risks in elastic cloud applications. IEEE Cloud Comput. 3(5), 26–33 (2016). https://doi.org/10.1109/MCC.2016.108

    Article  Google Scholar 

  20. Nouri, A., Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A.: Statistical model checking QoS properties of systems with SBIP. Int. J. Softw. Tools Technol. Transf. 17(2), 171–185 (2014). https://doi.org/10.1007/s10009-014-0313-6

    Article  Google Scholar 

  21. Nouri, A., Mediouni, B.L., Bozga, M., Combaz, J., Bensalem, S., Legay, A.: Performance evaluation of stochastic real-time systems with the SBIP framework. Int. J. Critical Comput.-Based Syst. 8(3/4), 340 (2018)

    Article  Google Scholar 

  22. Park, C., Kim, Y., Jeong, M.: Influencing factors on risk perception of IoT-based home energy management services. Telematics Inform. 35(8), 2355–2365 (2018)

    Article  Google Scholar 

  23. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE Computer Society, USA, October 1977. https://doi.org/10.1109/SFCS.1977.32

  24. Saives, J., Pianon, C., Faraut, G.: Activity discovery and detection of behavioral deviations of an inhabitant from binary sensors. IEEE Trans. Autom. Sci. Eng. 12(4), 1211–1224 (2015). https://doi.org/10.1109/TASE.2015.2471842

    Article  Google Scholar 

  25. Shahid, N., Naqvi, I.H., Qaisar, S.B.: One-class support vector machines: analysis of outlier detection for wireless sensor networks in harsh environments. Artif. Intell. Rev. 43(4), 515–563 (2013). https://doi.org/10.1007/s10462-013-9395-x

    Article  Google Scholar 

  26. Tao, Z.: Advanced Wavelet Sampling algorithm for IoT based environmental monitoring and management. Comput. Commun. 150, 547–555 (2020). https://doi.org/10.1016/j.comcom.2019.12.006

    Article  Google Scholar 

  27. Yang, Y., Webb, G.I., Wu, X.: Discretization methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 101–116. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_6

  28. Xie, Y., Shun-Zheng, Y.: A large-scale hidden semi-Markov model for anomaly detection on user browsing behaviors. IEEE/ACM Trans. Network. 17(1), 54–65 (2009). https://doi.org/10.1109/TNET.2008.923716

    Article  Google Scholar 

  29. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_17

    Chapter  MATH  Google Scholar 

  30. Yu, Y., Zhu, Y., Li, S., Wan, D.: Time series outlier detection based on sliding window prediction. Math. Probl. Eng. 2014, 1–14 (2014). https://doi.org/10.1155/2014/879736

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The research leading to these results has been supported by the European Union through the BRAIN-IoT project H2020-EU.2.1.1. Grant agreement ID: 780089. The authors would like to thank EMALCSA Company for the data collected from the dam infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Chehida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chehida, S., Baouya, A., Bensalem, S., Bozga, M. (2020). Applied Statistical Model Checking for a Sensor Behavior Analysis. In: Shepperd, M., Brito e Abreu, F., Rodrigues da Silva, A., PĂ©rez-Castillo, R. (eds) Quality of Information and Communications Technology. QUATIC 2020. Communications in Computer and Information Science, vol 1266. Springer, Cham. https://doi.org/10.1007/978-3-030-58793-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58793-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58792-5

  • Online ISBN: 978-3-030-58793-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics