Skip to main content

Regression of Instance Boundary by Aggregated CNN and GCN

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12353))

Included in the following conference series:

Abstract

This paper proposes a straightforward, intuitive deep learning approach for (biomedical) image segmentation tasks. Different from the existing dense pixel classification methods, we develop a novel multi-level aggregation network to directly regress the coordinates of the boundary of instances in an end-to-end manner. The network seamlessly combines standard convolution neural network (CNN) with Attention Refinement Module (ARM) and Graph Convolution Network (GCN). By iteratively and hierarchically fusing the features across different layers of the CNN, our approach gains sufficient semantic information from the input image and pays special attention to the local boundaries with the help of ARM and GCN. In particular, thanks to the proposed aggregation GCN, our network benefits from direct feature learning of the instances’ boundary locations and the spatial information propagation across the image. Experiments on several challenging datasets demonstrate that our method achieves comparable results with state-of-the-art approaches but requires less inference time on the segmentation of fetal head in ultrasound images and of optic disc and optic cup in color fundus images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almazroa, A., et al.: Retinal fundus images for glaucoma analysis: the RIGA dataset. In: Imaging Informatics for Healthcare, Research, and Applications, Medical Imaging 2018, vol. 10579, p. 105790B. International Society for Optics and Photonics (2018)

    Google Scholar 

  2. Arbab, A., et al.: Conditional random fields meet deep neural networks for semantic segmentation: combining probabilistic graphical models with deep learning for structured prediction. IEEE Sig. Process. Mag. 35(1), 37–52 (2018)

    Article  Google Scholar 

  3. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  7. Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11632–11640 (2019)

    Google Scholar 

  8. Chen, Y., Zhao, D., Lv, L., Zhang, Q.: Multi-task learning for dangerous object detection in autonomous driving. Inf. Sci. 432, 559–571 (2018)

    Article  Google Scholar 

  9. Cheng, D., Liao, R., Fidler, S., Urtasun, R.: DARNet: deep active ray network for building segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7431–7439 (2019)

    Google Scholar 

  10. Chung, F.R., Graham, F.C.: Spectral Graph Theory, vol. 92. American Mathematical Society, Rhode Island (1997)

    Google Scholar 

  11. Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    Article  Google Scholar 

  12. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  13. Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.J.: Wing loss for robust facial landmark localisation with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235–2245 (2018)

    Google Scholar 

  14. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 37(7), 1597–1605 (2018)

    Article  Google Scholar 

  15. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  16. Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2011)

    Google Scholar 

  17. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216. ACM Press/Addison-Wesley Publishing Co. (1997)

    Google Scholar 

  18. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  20. Gur, S., Shaharabany, T., Wolf, L.: End to end trainable active contours via differentiable rendering. arXiv preprint arXiv:1912.00367 (2019)

  21. Gur, S., Wolf, L., Golgher, L., Blinder, P.: Unsupervised microvascular image segmentation using an active contours mimicking neural network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10722–10731 (2019)

    Google Scholar 

  22. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE international Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  25. van den Heuvel, T.L., de Bruijn, D., de Korte, C.L., van Ginneken, B.: Automated measurement of fetal head circumference using 2D ultrasound images. PLoS ONE 13(8), e0200412 (2018)

    Article  Google Scholar 

  26. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  27. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988). https://doi.org/10.1007/BF00133570

    Article  MATH  Google Scholar 

  28. Li, G., Müller, M., Thabet, A., Ghanem, B.: Can GCNs go as deep as CNNs? arXiv preprint arXiv:1904.03751 (2019)

  29. Li, Y., Gupta, A.: Beyond grids: learning graph representations for visual recognition. In: Advances in Neural Information Processing Systems, pp. 9225–9235 (2018)

    Google Scholar 

  30. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1377–1385 (2015)

    Google Scholar 

  31. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  32. Marcos, D., et al.: Learning deep structured active contours end-to-end. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8877–8885 (2018)

    Google Scholar 

  33. Meng, Y., et al.: CNN-GCN aggregation enabled boundary regression for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2020, in press)

    Google Scholar 

  34. Mou, L., et al.: CS-Net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80

    Chapter  Google Scholar 

  35. Orlando, J.I., et al.: REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  36. Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 725–741. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_43

    Chapter  Google Scholar 

  37. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  38. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  39. Shin, S.Y., Lee, S., Yun, I.D., Lee, K.M.: Deep vessel segmentation by learning graphical connectivity. Med. Image Anal. 58, 101556 (2019)

    Article  Google Scholar 

  40. Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Tabish, A.U.S.: Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56. IEEE (2014)

    Google Scholar 

  41. Sun, K., et al.: High-resolution representations for labeling pixels and regions. arXiv preprint arXiv:1904.04514 (2019)

  42. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)

    Google Scholar 

  43. Xie, E., et al.: PolarMask: Single shot instance segmentation with polar representation. arXiv preprint arXiv:1909.13226 (2019)

  44. Xu, W., Wang, H., Qi, F., Lu, C.: Explicit shape encoding for real-time instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5168–5177 (2019)

    Google Scholar 

  45. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20

    Chapter  Google Scholar 

  46. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  47. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)

    Google Scholar 

  48. Zhang, L., Li, X., Arnab, A., Yang, K., Tong, Y., Torr, P.H.: Dual graph convolutional network for semantic segmentation. arXiv preprint arXiv:1909.06121 (2019)

  49. Zhang, Z., et al.: ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068. IEEE (2010)

    Google Scholar 

  50. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  51. Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 270–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_17

    Chapter  Google Scholar 

  52. Zhao, L., Peng, X., Tian, Y., Kapadia, M., Metaxas, D.N.: Semantic graph convolutional networks for 3D human pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3425–3435 (2019)

    Google Scholar 

  53. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgement

Y. Meng thanks the China Science IntelliCloud Technology Co., Ltd. for the studentship. D. Gao is supported by EPSRC Grant (EP/R014094/1). We thank NVIDIA for the donation of GPU cards. This work was undertaken on Barkla, part of the High Performance Computing facilities at the University of Liverpool, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11324 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, Y. et al. (2020). Regression of Instance Boundary by Aggregated CNN and GCN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12353. Springer, Cham. https://doi.org/10.1007/978-3-030-58598-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58598-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58597-6

  • Online ISBN: 978-3-030-58598-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics