Skip to main content

Efficiency and Accuracy Improvements of Secure Floating-Point Addition over Secret Sharing

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12231))

Included in the following conference series:

Abstract

In secure multiparty computation (MPC), floating-point numbers should be handled in many potential applications, but these are basically expensive. In particular, for MPC based on secret sharing (SS), the floating-point addition takes many communication rounds though the addition is the most fundamental operation. In this paper, we propose an SS-based two-party protocol for floating-point addition with 13 rounds (for single/double precision numbers), which is much fewer than the milestone work of Aliasgari et al. in NDSS 2013 (34 and 36 rounds, respectively) and also fewer than the state of the art in the literature. Moreover, in contrast to the existing SS-based protocols which are all based on “roundTowardZero” rounding mode in the IEEE 754 standard, we propose another protocol with 15 rounds which is the first result realizing more accurate “roundTiesToEven” rounding mode. We also discuss possible applications of the latter protocol to secure Validated Numerics (a.k.a. Rigorous Computation) by implementing a simple example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliasgari, M., Blanton, M.: Secure computation of hidden markov models. Proc. SECRYPT 2013, 242–253 (2013)

    Google Scholar 

  2. Aliasgari, M., Blanton, M., Bayatbabolghani, F.: Secure computation of hidden markov models and secure floating-point arithmetic in the malicious model. Int. J. Inf. Sec. 16(6), 577–601 (2017)

    Article  Google Scholar 

  3. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating point numbers. In: NDSS 2013, San Diego, California, USA, 24–27 February 2013

    Google Scholar 

  4. Araki, T., et al.: Generalizing the SPDZ compiler for other protocols. Proc. ACM CCS 2018, 880–895 (2018)

    Google Scholar 

  5. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. Proc. ACM CCS 2016, 805–817 (2016)

    Google Scholar 

  6. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 341–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_14

    Chapter  Google Scholar 

  7. Catrina, O.: Towards practical secure computation with floating-point numbers. In: Proceedings Balkan CryptSec 2018 (2018)

    Google Scholar 

  8. Catrina, O.: Efficient secure floating-point arithmetic using shamir secret sharing. Proc. SECRYPT 2019, 49–60 (2019)

    Google Scholar 

  9. Catrina, O.: Optimization and tradeoffs in secure floating point computation: products, powers, and polynomials. In: Proceedings of the 6th Conference on the Engineering of Computer Based Systems (ECBS 2019), pp. 7:1–7:10 (2019)

    Google Scholar 

  10. Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T., Zeitouni, S.: Automated synthesis of optimized circuits for secure computation. Proc. ACM CCS 2015, 1504–1517 (2015)

    Google Scholar 

  11. Demmler, D., Schneider, T., Zohner, M.: ABY – a framework for efficient mixed-protocol secure two-party computation. In: NDSS 2015, San Diego, California, USA, 8–11 February 2015

    Google Scholar 

  12. Eigner, F., Maffei, M., Pryvalov, I., Pampaloni, F., Kate, A.: Differentially private data aggregation with optimal utility. In: Proceedings ACSAC 2014, ACM, pp. 316–325 (2014)

    Google Scholar 

  13. Goldreich, O.: Foundations of Cryptography, vol. II. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  14. Hemenway, B., Lu, S., Ostrovsky, R., Welser IV, W.: High-precision secure computation of satellite collision probabilities. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 169–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_9

    Chapter  Google Scholar 

  15. 754-2019 - IEEE Standard for Floating-Point Arithmetic (2019)

    Google Scholar 

  16. Kamm, L., Willemson, J.: Secure floating point arithmetic and private satellite collision analysis. Int. J. Inf. Sec. 14(6), 531–548 (2015)

    Article  Google Scholar 

  17. Liu, Y.-C., Chiang, Y.-T., Hsu, T.-S., Liau, C.-J., Wang, D.-W.: Floating point arithmetic protocols for constructing secure data analysis application. In: Proceedings KES 2013, Procedia Computer Science, vol. 22, pp. 152–161 (2013)

    Google Scholar 

  18. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: Proceedings of the IEEE S&P 2017, pp. 19–38 (2017)

    Google Scholar 

  19. Morita, H., Attrapadung, N., Teruya, T., Ohata, S., Nuida, K., Hanaoka, G.: Constant-round client-aided secure comparison protocol. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 395–415. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_20

    Chapter  Google Scholar 

  20. Ohata, S., Nuida, K.: Communication-Efficient (Client-Aided) secure two-party protocols and its application. In: Proceedings Financial Cryptography and Data Security(FC) 2020, to appear (https://arxiv.org/abs/1907.03415v2)

  21. Omori, W., Kanaoka, A.: Efficient secure arithmetic on floating point numbers. In: Barolli, L., Enokido, T., Takizawa, M. (eds.) NBiS 2017. LNDECT, vol. 7, pp. 924–934. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65521-5_83

    Chapter  Google Scholar 

  22. Pullonen, P., Siim, S.: Combining secret sharing and garbled circuits for efficient private IEEE 754 floating-point computations. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 172–183. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_13

    Chapter  Google Scholar 

  23. Raeini, M.G., Nojoumian, M.: Secure trust evaluation using multipath and referral chain methods. In: Mauw, S., Conti, M. (eds.) STM 2019. LNCS, vol. 11738, pp. 124–139. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31511-5_8

    Chapter  Google Scholar 

  24. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation. Technical Report 05.12, Faculty for Information- and Communication Sciences, Hamburg University of Technology, 13 November 2005 (2005)

    Google Scholar 

  25. Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private distributed computation. Proc. ACM CCS 2013, 813–826 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Ministry of Internal Affairs and Communications SCOPE Grant Number 182103105 and by JST CREST JPMJCR19F6. The authors thank Satsuya Ohata for his implemented library of basic protocols proposed in [20]. This work was done when the first author was an undergraduate student at Department of Mathematical Engineering and Information Physics, School of Engineering, The University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kota Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sasaki, K., Nuida, K. (2020). Efficiency and Accuracy Improvements of Secure Floating-Point Addition over Secret Sharing. In: Aoki, K., Kanaoka, A. (eds) Advances in Information and Computer Security. IWSEC 2020. Lecture Notes in Computer Science(), vol 12231. Springer, Cham. https://doi.org/10.1007/978-3-030-58208-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58208-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58207-4

  • Online ISBN: 978-3-030-58208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics