Skip to main content

Industrial Perspective on Immunotherapy

  • Chapter
  • First Online:
Book cover Bio-Nanomedicine for Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1295))

  • 1624 Accesses

Abstract

Immunotherapy has revolutionised oncology and represents a fast-growing area of new drug products in anti-cancer therapy. Patients can now benefit from an expanded landscape of treatment options for several tumour types. The value of cancer immunotherapy is well-established thanks to the clinical success following regulatory approval of several immunomodulators and cellular immunotherapies, and both the private and the public sector are investing to provide patients with improved immune-based agents and to extend the indications of already marketed products. Although recent achievements offer the best promise for successful treatment, innovators in the field of cancer immunotherapy still face many challenges toward commercialisation that could be mitigated by a smart drug development strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Acronym:

Definition

ADCC:

Antibody-dependent cell-mediated cytotoxicity

AE:

Adverse event

AI:

Artificial intelligence

AIDS:

Acquired immune deficiency syndrome

APC:

Antigen-presenting cells

ATMP:

Advanced therapy medicinal product

B2M :

β2-microglobulin

B-ALL:

B-cell precursor acute lymphoblastic leukaemia

BCMA:

B-cell maturation antigen

BMS:

Bristol–Myers Squibb’s

CAR:

Chimeric antigen receptor

CAT:

Committee for Advanced Therapies

CD:

Cluster of differentiation

CDC:

Complement-dependent cytotoxicity

CEA:

Carcinoembryonic antigen

CRISPR:

Clustered Regularly Interspaced Short Palindromic Repeats

CSF1R:

Colony-stimulating factor 1 receptor

ctDNA:

Circulating tumour DNA

CTLA4:

Cytotoxic T-lymphocyte-associated protein

DARPins:

Designed ankyrin repeats

DC:

Dendritic cells

DLBCL:

Diffuse-large B-cell lymphoma

dMMR:

Deficient mismatch repair

EBV:

Epstein–Barr virus

EGFR:

Epidermal growth factor receptor

EMA:

European Medicines Agency

Fc:

Fragment crystallisable

FDA:

Food and Drug Administration

GITR:

Glucocorticoid-induced TNFR-related protein

GMP:

Good manufacturing practise

GPC3:

Glypican-3

HBV:

Hepatitis B virus

HER2:

Receptor tyrosine-protein kinase erbB-2

HLA:

Human leukocyte antigen

HNSCC:

Head and neck squamous cell carcinoma

HPV:

Human papilloma virus

HSV:

Herpes simplex virus

HTA:

Health technology assessment

ICI:

Immune checkpoint inhibitors

ICOS:

Inducible T-cell costimulator

IDO:

Idoleamine-2,3 dioxygenase

IgG:

Immunoglobulin G

IL:

Interleukin

INFAR:

Interferon-alpha receptor

INF-γ:

Interferon-γ

IP:

Intellectual property

LAG3:

Lymphocyte-activation gene 3

MA:

Marketing authorisation

mAbs:

Monoclonal antibodies

MAGE:

Melanoma-associated antigen

MDSC:

Myeloid-derived suppressor cells

MHC-I:

Major histocompatibility complex I

MRD:

Minimal residual disease

MSI:

Micro satellite instability

MUC-1:

Mucin 1

NGS:

Next-generation sequencing

NIH:

National Institutes of Health

NK:

Natural killer

NSCLC:

Non-small cell lung cancer

PASS:

Post authorisation safety study

PD1:

Programmed cell death protein 1

PDL1:

Programmed cell death protein ligand 1

PGE2:

Prostaglandin E2

PRO:

Patient-reported outcome

PSCA:

Prostate stem cell antigen

PSMA:

Prostate-specific membrane antigen

PTA:

Patent term adjustment

R&D:

Research and development

RCC:

Renal cell carcinoma

ROS:

Reactive oxygen species

RSV:

Respiratory syncytial virus

SME:

Small- and medium-sized entrepreneurs

SPC:

Supplementary protection certificate

STAT3:

Signal transducer and activator of transcription 3

STING:

Stimulator of interferon genes

TCR:

T-cell receptor

TGF-β:

Transforming growth factor beta

TIL:

Tumour-infiltrating lymphocytes

TLR:

Toll-like receptor

TMB:

Tumour mutational burden

TME:

Tumour microenvironment

TNBC:

Triple-negative breast cancer

TNF:

Tumour necrosis factor

Treg:

T regulatory cells

TRIPS:

Trade-Related Aspects of Intellectual Property Rights

USPTO:

United States Patent Office

VEGF:

Vascular endothelial growth factor

WT1:

Wilms tumour protein

WTO:

World Trade Organization

References

  1. Hodi, F. S., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363(8), 711–723.

    Article  CAS  Google Scholar 

  2. Robert, C., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372(1), 30–39.

    Google Scholar 

  3. Sharma, P., & Allison, J. P. (2015). The future of immune checkpoint therapy. Science, 348(6230), 56–61.

    Google Scholar 

  4. Rosenberg, S. A., & Restifo, N. P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 348(6230), 62–68.

    Google Scholar 

  5. Eshhar, Z., Waks, T., Gross, G., & Schindler, D. G. (1993). Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 90(2), 720–724.

    Google Scholar 

  6. Robert, C., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517–2526.

    Google Scholar 

  7. Larkin, J., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated Melanoma. The New England Journal of Medicine, 373(1), 23–34.

    Google Scholar 

  8. Ansell, S. M., et al. (2015). PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. The New England Journal of Medicine, 372(4), 311–319.

    Google Scholar 

  9. Hamanishi, J., et al. (2015). Safety and antitumor activity of Anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. Journal of Clinical Oncology, 33(34), 4015–4022.

    Google Scholar 

  10. Powles, T., et al. (2014). MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature, 515(7528), 558–562.

    Google Scholar 

  11. Cohen, E. E. W., et al. (2015). KEYNOTE-040: A phase III randomized trial of pembrolizumab (MK-3475) versus standard treatment in patients with recurrent or metastatic head and neck cancer. Journal of Clinical Oncology, 33(15_suppl), TPS6084.

    Google Scholar 

  12. Motzer, R. J., et al. (2015). Nivolumab versus everolimus in advanced renal-cell carcinoma. The New England Journal of Medicine, 373(19), 1803–1813.

    Google Scholar 

  13. Gong, J., Chehrazi-Raffle, A., Reddi, S., & Salgia, R. (2018). Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. Journal for Immunotherapy of Cancer, 6(1), 8.

    Google Scholar 

  14. Jardim, D. L., De Melo Gagliato, D., Giles, F. J., & Kurzrock, R. (2018). Analysis of drug development paradigms for immune checkpoint inhibitors. Clinical Cancer Research, 24(8), 1785–1794.

    Google Scholar 

  15. Altmann, D. M. (2018). A Nobel Prize-worthy pursuit: Cancer immunology and harnessing immunity to tumour neoantigens. Immunology, 155(3), 283–284.

    Google Scholar 

  16. Leach, D. R., Krummel, M. F., & Allison, J. P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science, 271(5256), 1734–1736.

    Google Scholar 

  17. Iwai, Y., et al. (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 99(19), 12293–12297.

    Google Scholar 

  18. Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775–787.

    Google Scholar 

  19. Tanaka, A., & Sakaguchi, S. (2017). Regulatory T cells in cancer immunotherapy. Cell Research, 27(1), 109–118.

    Google Scholar 

  20. Wherry, E. J., & Kurachi, M. (2015). Molecular and cellular insights into T cell exhaustion. Nature Reviews Immunology, 15(8), 486–499.

    Google Scholar 

  21. Chen, L., & Flies, D. B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature Reviews Immunology, 13(4), 227–242.

    Google Scholar 

  22. Gajewski, T. F., Schreiber, H., & Fu, Y. X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 14(10), 1014–1022.

    Google Scholar 

  23. Galluzzi, L., et al. (2014). Classification of current anticancer immunotherapies. Oncotarget, 5(24), 12472.

    Google Scholar 

  24. Melero, I., et al. (2014). Therapeutic vaccines for cancer: An overview of clinical trials. Nature Reviews Clinical Oncology, 11(9), 509.

    Google Scholar 

  25. Whiteside, T. L., Demaria, S., Rodriguez-Ruiz, M. E., Zarour, H. M., & Melero, I. (2016). Emerging opportunities and challenges in cancer immunotherapy. Clinical Cancer Research, 22(8), 1845–1855.

    Google Scholar 

  26. Besser, M. J., et al. (2013). Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clinical Cancer Research, 19(17), 4792–4800.

    Google Scholar 

  27. Raman, M. C. C., et al. (2016). Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy. Scientific Reports, 6, 18851.

    Google Scholar 

  28. Neelapu, S. S., et al. (2017). Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-Cell lymphoma. The New England Journal of Medicine, 377(26), 2531–2544.

    Google Scholar 

  29. Schuster, S. J., et al. (2019). Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. The New England Journal of Medicine, 380(1), 45–56.

    Google Scholar 

  30. Kruger, S., et al. (2019). Advances in cancer immunotherapy 2019 – Latest trends. Journal of Experimental and Clinical Cancer Research, 38(1), 1.

    Google Scholar 

  31. Kaufman, H. L., et al. (2017). The value of cancer immunotherapy summit at the 2016 society for immunotherapy of cancer 31st anniversary annual meeting. Journal for Immunotherapy of Cancer, 5(1), 1–10.

    Google Scholar 

  32. Mariotto, A. B., Robin Yabroff, K., Shao, Y., Feuer, E. J., & Brown, M. L. (2011). Projections of the cost of cancer care in the United States: 2010–2020. Journal of the National Cancer Institute, 103(2), 117–128.

    Google Scholar 

  33. Hodi, F. S., et al. (2016). Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. The Lancet Oncology, 17(11), 1558–1568.

    Google Scholar 

  34. Murphy, K. M., Topel, R. H., Murphy, K. M., & Topel, R. H. (2013). The economic value of medical research. Measuring the Gains from Medical Research, 15(30), 125–146.

    Google Scholar 

  35. Pan, C. L., & Chen, F. C. (2017). Patent trend and competitive analysis of cancer immunotherapy in the United States. Human Vaccines & Immunotherapeutics, 13(11), 2583–2593.

    Google Scholar 

  36. Bonter, K., Breckenridge, Z., Lachance, S., Delisle, J. S., & Bubela, T. (2017). Opportunities and challenges for the cellular immunotherapy sector: A global landscape of clinical trials. Regenerative Medicine, 12(6), 623–636.

    Google Scholar 

  37. Barrett, D. M., Grupp, S. A., & June, C. H. (2015). Chimeric antigen receptor– And TCR-modified T cells enter main street and wall street. Journal of Immunology, 195(3), 755–761.

    Google Scholar 

  38. Hartmann, J., Schüßler-Lenz, M., Bondanza, A., & Buchholz, C. J. (2017). Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Molecular Medicine, 9(9), 1183–1197.

    Google Scholar 

  39. Storz, U. (2016). Intellectual property issues of immune checkpoint inhibitors. MAbs, 8(1), 10–26.

    Google Scholar 

  40. Dimitrov, D. S., & Marks, J. D. (2009). Therapeutic antibodies: Current state and future trends–is a paradigm change coming soon? Methods in Molecular Biology, 525, 1–27.

    Google Scholar 

  41. Stumpp, M. T., Binz, H. K., & Amstutz, P. (2008). DARPins: A new generation of protein therapeutics. Drug Discovery Today, 13(15–16), 695–701.

    Google Scholar 

  42. Smit, M. A. D., Jaffee, E. M., & Lutz, E. R. (2014). Cancer immunoprevention – The next frontier. Cancer Prevention Research, 7(11), 1072–1080.

    Google Scholar 

  43. Lee Ventola, C. (2017). Cancer immunotherapy, part 3: Challenges and future trends. Pharmacy and Therapeutics, 42(8), 514.

    Google Scholar 

  44. Zarour, H. M. (2016). Reversing T-cell dysfunction and exhaustion in cancer. Clinical Cancer Research, 22(8), 1856–1864.

    Google Scholar 

  45. Melero, I., Rouzaut, A., Motz, G. T., & Coukos, G. (2014). T-cell and NK-cell infiltration into solid tumors: A key limiting factor for efficacious cancer immunotherapy. Cancer Discovery, 4(5), 522–526.

    Google Scholar 

  46. Türeci, Ö., et al. (2016). Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clinical Cancer Research, 22(8), 1885–1896.

    Google Scholar 

  47. Zugazagoitia, J., et al. (2016). Current challenges in cancer treatment. Clinical Therapeutics, 38(7), 1551–1566.

    Google Scholar 

  48. Tang, J., Shalabi, A., & Hubbard-Lucey, V. M. (2018). Comprehensive analysis of the clinical immuno-oncology landscape. Annals of Oncology, 29(1), 84–91.

    Google Scholar 

  49. Shrimali, R. K., et al. (2017). Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunology Research, 5(9), 755–766.

    Google Scholar 

  50. Wolchok, J. D., et al. (2013). Nivolumab plus Ipilimumab in advanced melanoma. The New England Journal of Medicine, 369, 122–133.

    Google Scholar 

  51. Postow, M. A., et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. The New England Journal of Medicine, 372(21), 2006–2017.

    Google Scholar 

  52. Smyth, M. J., Ngiow, S. F., Ribas, A., & Teng, M. W. L. (2016). Combination cancer immunotherapies tailored to the tumour microenvironment. Nature Reviews Clinical Oncology, 13(3), 143.

    Google Scholar 

  53. Melero, I., et al. (2015). Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nature Reviews Cancer, 15(8), 457–472.

    Google Scholar 

  54. Apetoh, L., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 13(9), 1050–1059.

    Google Scholar 

  55. Brix, N., Tiefenthaller, A., Anders, H., Belka, C., & Lauber, K. (2017). Abscopal, immunological effects of radiotherapy: Narrowing the gap between clinical and preclinical experiences. Immunological Reviews, 280(1), 249–279.

    Google Scholar 

  56. Woo, S. R., et al. (2014). STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity, 41(5), 830–842.

    Google Scholar 

  57. Deng, L., et al. (2014). STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity, 41(5), 843–852.

    Google Scholar 

  58. Alexandrov, L. B., et al. (2013). Signatures of mutational processes in human cancer. Nature, 500(7463), 415–421.

    Google Scholar 

  59. Schmid, P., et al. (2018). Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. The New England Journal of Medicine, 379(22), 2108–2121.

    Google Scholar 

  60. Joseph, R. W., et al. (2018). Baseline tumor size is an independent prognostic factor for overall survival in patients with melanoma treated with pembrolizumab. Clinical Cancer Research, 24(20), 4960–4967.

    Google Scholar 

  61. Liu, J., et al. (2016). Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discovery, 6(12), 1382–1399.

    Google Scholar 

  62. Garcia, C. A., et al. (2018). Neurologic immune-related adverse events associated with adjuvant ipilimumab: Report of two cases. Journal for Immunotherapy of Cancer, 6(1), 83.

    Google Scholar 

  63. Eggermont, A. M. M., et al. (2015). Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. The Lancet Oncology, 16(5), 522–530.

    Google Scholar 

  64. Eggermont, A. M. M., et al. (2016). Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. The New England Journal of Medicine, 375(19), 1845–1855.

    Google Scholar 

  65. Weber, J., et al. (2017). Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. The New England Journal of Medicine, 377(19), 1824–1835.

    Google Scholar 

  66. Blank, C. U., et al. (2018). Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nature Medicine, 24(11), 1655–1661.

    Google Scholar 

  67. Colwell, J. (2015). Is PD-L1 expression a biomarker of response? Cancer Discovery, 5(12).

    Google Scholar 

  68. Fabrizio, D. A., et al. (2018). Beyond microsatellite testing: Assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. Journal of Gastrointestinal Oncology, 9(4), 610.

    Google Scholar 

  69. Salem, M. E., et al. (2018). 1835PDComparative molecular analysis between microsatellite instability-high (MSI-H) tumors with high tumor mutational burden (TMB-H) versus MSI-H tumors with TMB-intermediate/low. Annals of Oncology, 29(suppl_8), mdy303–mdy005.

    Google Scholar 

  70. Carbone, D. P., et al. (2017). First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. The New England Journal of Medicine, 376(25), 2415–2426.

    Google Scholar 

  71. Hellmann, M. D., et al. (2018). Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. The New England Journal of Medicine, 378(22), 2093–2104.

    Google Scholar 

  72. McDermott, D. F., et al. (2018). Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nature Medicine, 24(6), 749–757.

    Google Scholar 

  73. Yang, W., et al. (2019). Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nature Medicine, 25(5), 767–775.

    Google Scholar 

  74. Yuan, J., et al. (2016). Novel technologies and emerging biomarkers for personalized cancer immunotherapy. Journal for Immunotherapy of Cancer, 4(1), 3.

    Google Scholar 

  75. Kruger, S., et al. (2017). Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology, 6(5), e1310358.

    Google Scholar 

  76. Gagan, J., & Van Allen, E. M. (2015). Next-generation sequencing to guide cancer therapy. Genome Medicine, 7(1), 1.

    Google Scholar 

  77. Haratani, K., et al. (2018). Association of immune-related adverse events with nivolumab efficacy in non-small cell lung cancer. JAMA Oncology, 4(3), 374–378.

    Google Scholar 

  78. Haanen, J. B., et al. (2017). Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 28(suppl_4), iv119–iv142.

    Google Scholar 

  79. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    Google Scholar 

  80. Zaretsky, J. M., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. The New England Journal of Medicine, 375(9), 819–829.

    Google Scholar 

  81. Hanna, E., Rémuzat, C., Auquier, P., & Toumi, M. (2016). Advanced therapy medicinal products: Current and future perspectives. Journal of Market Access & Health Policy, 4(1), 31036.

    Google Scholar 

  82. Pignatti, F., et al. (2002). The review of drug applications submitted to the European Medicines Evaluation Agency: Frequently raised objections, and outcome. European Journal of Clinical Pharmacology, 58(9), 573–580.

    Google Scholar 

  83. MacIulaitis, R., D’Apote, L., Buchanan, A., Pioppo, L., & Schneider, C. K. (2012). Clinical development of advanced therapy medicinal products in Europe: Evidence that regulators must be proactive. Molecular Therapy, 20(3), 479–482.

    Google Scholar 

  84. de Wilde, S., Guchelaar, H. J., Zandvliet, M. L., & Meij, P. (2016). Clinical development of gene- and cell-based therapies: Overview of the European landscape. Molecular Therapy-Methods & Clinical Development, 3, 16073.

    Google Scholar 

  85. Codinach, M., et al. (2016). Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow–derived multipotent mesenchymal stromal cells. Cytotherapy, 18(9), 1197–1208.

    Google Scholar 

  86. Shire, S. J. (2009). Formulation and manufacturability of biologics. Current Opinion in Biotechnology, 20(6), 708–714.

    Google Scholar 

  87. Galli, M. C. (2016). ATMPs for cancer immunotherapy: A regulatory overview. Methods in Molecular Biology, 1393, 1–10.

    Google Scholar 

  88. Viganò, M., Giordano, R., & Lazzari, L. (2017). Challenges of running a GMP facility for regenerative medicine in a public hospital. Regenerative Medicine, 12(7), 803–813.

    Google Scholar 

  89. ten Ham, R. M. T., et al. (2018). Challenges in advanced therapy medicinal product development: A survey among companies in Europe. Molecular Therapy-Methods & Clinical Development, 11, 121–130.

    Google Scholar 

  90. Wayteck, L., Breckpot, K., Demeester, J., De Smedt, S. C., & Raemdonck, K. (2014). A personalized view on cancer immunotherapy. Cancer Letters, 352(1), 113–125.

    Google Scholar 

  91. Hoos, A., et al. (2010). Improved endpoints for cancer immunotherapy trials. Journal of the National Cancer Institute, 102(18), 1388–1397.

    Google Scholar 

  92. Alatrash, G., Jakher, H., Stafford, P. D., & Mittendorf, E. A. (2013). Cancer immunotherapies, their safety and toxicity. Expert Opinion on Drug Safety, 12(5), 631–645.

    Google Scholar 

  93. Kovarik, J. E. (2018). Cancer moonshot: Patents for patients. Trends in Cancer, 4(8), 515–516.

    Google Scholar 

  94. Bognar, C. L. F. B., Bychkovsky, B. L., et al. (2016). Compulsory licenses for cancer drugs: Does circumventing patent rights improve access to oncology medications? Journal of Global Oncology, 2(5), 292–301.

    Google Scholar 

  95. Couzin-Frankel, J. (2013). Breakthrough of the year 2013. Cancer Immunotherapy Science, 342(6165), 1432–1433.

    Google Scholar 

  96. Bethune, M. T., & Joglekar, A. V. (2017). Personalized T cell-mediated cancer immunotherapy: Progress and challenges. Current Opinion in Biotechnology, 48, 142–152.

    Google Scholar 

  97. Capietto, A. H., Jhunjhunwala, S., & Delamarre, L. (2017). Characterizing neoantigens for personalized cancer immunotherapy. Current Opinion in Immunology, 46, 58–65.

    Google Scholar 

  98. Gotwals, P., et al. (2017). Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nature Reviews Cancer, 17(5), 286–301.

    Google Scholar 

  99. Francis, D. M., & Thomas, S. N. (2017). Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Advanced Drug Delivery Reviews, 114, 33–42.

    Google Scholar 

  100. Quandt, D., et al. (2017). Implementing liquid biopsies into clinical decision making for cancer immunotherapy. Oncotarget, 8(29), 48507.

    Google Scholar 

  101. Munn, D. H., & Bronte, V. (2016). Immune suppressive mechanisms in the tumor microenvironment. Current Opinion in Immunology, 39, 1–6.

    Google Scholar 

  102. Ries, C. H., et al. (2014). Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 25(6), 846–859.

    Google Scholar 

  103. Calcinotto, A., et al. (2018). IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature, 559(7714), 363–369.

    Google Scholar 

  104. Tokarew, N., Ogonek, J., Endres, S., von Bergwelt-Baildon, M., & Kobold, S. (2019). Teaching an old dog new tricks: Next-generation CAR T cells. British Journal of Cancer, 120(1), 26–37.

    Google Scholar 

  105. Ying, Z., et al. (2019). A safe and potent anti-CD19 CAR T cell therapy. Nature Medicine, 25(6), 947–953.

    Google Scholar 

  106. Gargett, T., & Brown, M. P. (2014). The inducible caspase-9 suicide gene system as a ‘safety switch’ to limit on-target, off-tumor toxicities of chimeric antigen receptor T-cells. Frontiers in Pharmacology, 5, 235.

    Google Scholar 

  107. Di Stasi, A., et al. (2011). Inducible apoptosis as a safety switch for adoptive cell therapy. The New England Journal of Medicine, 365, 1673–1683.

    Google Scholar 

  108. Panch, T., Mattie, H., & Celi, L. A. (2019). The “inconvenient truth” about AI in healthcare. Npj Digital Medicine, 2, 77.

    Google Scholar 

  109. Basch, E., et al. (2016). Symptom monitoring with patient-reported outcomes during routine cancer treatment: A randomized controlled trial. Journal of Clinical Oncology, 34(6), 557.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravasio, S. (2021). Industrial Perspective on Immunotherapy. In: Fontana, F., Santos, H.A. (eds) Bio-Nanomedicine for Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-58174-9_15

Download citation

Publish with us

Policies and ethics