Skip to main content

Artificial Intelligence in Medicine

Gastroenterology

Book cover Artificial Intelligence in Medicine

Abstract

The holy grail in endoscopy examinations has for a long time been assisted diagnosis using Artificial Intelligence (AI). Recent developments in computer hardware are now enabling technology to equip clinicians with promising tools for computer-assisted diagnosis (CAD) systems. However, creating viable models or architectures, training them, and assessing their ability to diagnose at a human level, are complicated tasks. This is currently an active area of research, and many promising methods have been proposed. In this chapter, we give an overview of the topic. This includes a description of current medical challenges followed by a description of the most commonly used methods in the field. We also present example results from research targeting some of these challenges, and a discussion on open issues and ongoing work is provided. Hopefully, this will inspire and enable readers to future develop CAD systems for gastroenterology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access. 2018;6:52138–60.

    Article  Google Scholar 

  2. Alexandre LA, Casteleiro J, Nobreinst N. Polyp detection in endoscopic video using svms. In: Proceeding of Knowledge Discovery in Databases (PKDD). Berlin/Heidelberg: Springer; 2007. p. 358–65.

    Google Scholar 

  3. Ali S, Zhou F, Braden B, Bailey A, Yang S, Cheng G, Zhang P, Li X, Kayser M, Soberanis-Mukul R, Albarqouni S, Wang X, Wang C, Watanabe S, Oksuz I, Ning Q, Yang S, Khan MA, Gao X, Rittscher J. An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy. Sci Rep. 2020;10:2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Precise4Q consortium: explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20(1):310. https://europepmc.org/articles/PMC7706019

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ameling S, Wirth S, Paulus D, Lacey G, Vilarino F. Texture-based polyp detection in colonoscopy. In: Meinzer HP, Deserno TM, Handels H, Tolxdorff T (eds) Bildverarbeitung für die Medizin 2009. Informatik aktuell. Springer, Berlin, Heidelberg; 2009. p. 346–50.

    Google Scholar 

  6. Angermann Q, Bernal J, Sánchez-Montes C, Hammami M, Fernández-Esparrach G, Dray X, Romain O, Sánchez FJ, Histace A. Towards real-time polyp detection in colonoscopy videos: adapting still frame-based methodologies for video sequences analysis. In: Cardoso MJ, Arbel T, Luo X, Wesarg S, Reichl T, González Ballester MÁ, McLeod J, Drechsler K, Peters T, Erdt M, Mori K, Linguraru MG, Uhl A, Oyarzun Laura C, Shekhar R, editors. Computer assisted and robotic endoscopy and clinical image-based procedures. Cham: Springer International Publishing; 2017. p. 29–41.

    Chapter  Google Scholar 

  7. Bai W, Oktay O, Sinclair M, Suzuki H, Rajchl M, Tarroni G, Glocker B, King A, Matthews PM, Rueckert D. Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins DL, Duchesne S, editors. Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI). Lecture Notes in Computer Science. Springer International Publishing; 2017. p. 253–60.

    Google Scholar 

  8. Bell LT, Gandhi S. A comparison of computer-assisted detection (CAD) programs for the identification of colorectal polyps: performance and sensitivity analysis, current limitations and practical tips for radiologists. Clin Radiol. 2018;73:593.e11–8. https://doi.org/10.1016/j.crad.2018.02.009.

    Article  CAS  Google Scholar 

  9. Bernal J, Tajkbaksh N, Snchez FJ, Matuszewski BJ, Chen H, Yu L, Angermann Q, Romain O, Rustad B, Balasingham I, Pogorelov K, Choi S, Debard Q, Maier-Hein L, Speidel S, Stoyanov D, Brandao P, Crdova H, Snchez-Montes C, Gurudu SR, Fernndez-Esparrach G, Dray X, Liang J, Histace A. Comparative validation of polyp detection methods in video colonoscopy: results from the miccai 2015 endoscopic vision challenge. IEEE Trans Med Imaging. 2017;36(6):1231–49.

    Article  PubMed  Google Scholar 

  10. Bernal J, Sánchez FJ, Fernández-Esparrach G, Gil D, Rodríguez C, Vilariño F. Wm-dova maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput Med Imaging Graph. 2015;43:99–111.

    Article  PubMed  Google Scholar 

  11. Bernal J, Sánchez J, Vilarino F. Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 2012;45(9):3166–82.

    Article  Google Scholar 

  12. Bernal JJ, Histace A, Masana M, Angermann Q, Sánchez-Montes C, Rodriguez C, Hammami M, Garcia-Rodriguez A, Córdova H, Romain O, Fernández-Esparrach G, Dray X, Sanchez J. Polyp detection benchmark in colonoscopy videos using GTCreator: a novel fully configurable tool for easy and fast annotation of image databases. In: Proceedings of 32nd CARS conference. Berlin; 2018.

    Google Scholar 

  13. Billah M, Waheed S. Gastrointestinal polyp detection in endoscopic images using an improved feature extraction method. Biomed Eng Lett. 2018;8(1):69–75.

    Article  PubMed  Google Scholar 

  14. Borgli H, Thambawita V, Smedsrud PH, Hicks S, Jha D, Eskeland SL, Randel KR, Pogorelov K, Lux M, Nguyen DTD, Johansen D, Griwodz C, Stensland HK, Garcia-Ceja E, Schmidt PT, Hammer HL, Riegler MA, Halvorsen P, de Lange T. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci Data. 2020;7:283. https://doi.org/10.1038/s41597-020-00622-y. Springer Nature

    Article  PubMed  PubMed Central  Google Scholar 

  15. Boughorbel S, Jarray F, El-Anbari M. Optimal classifier for imbalanced data using Matthews correlation coefficient metric. PLoS One. 2017;12(6):e0177678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bradski G. The OpenCV library. Dr Dobb’s J Softw Tools. 2000;120:122.

    Google Scholar 

  17. Brandao P, Mazomenos E, Ciuti G, Caliò R, Bianchi F, Menciassi A, Dario P, Koulaouzidis A, Arezzo A, Stoyanov D. Fully convolutional neural networks for polyp segmentation in colonoscopy. In: Medical imaging 2017: computer-aided diagnosis, vol. 10134. International Society for Optics and Photonics; 2017. p. 101340F. https://doi.org/10.1117/12.2254361

  18. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  19. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383(9927):1490–502.

    Article  PubMed  Google Scholar 

  20. Cave DR, Hakimian S, Patel K. Current controversies concerning capsule endoscopy. Dig Dis Sci. 2019;64(11):3040–7.

    Article  PubMed  Google Scholar 

  21. Cho M, Kim JH, Kong HJ, Hong KS, Kim S. A novel summary report of colonoscopy: timeline visualization providing meaningful colonoscopy video information. Int J Color Dis. 2018;33(5):549–59.

    Article  Google Scholar 

  22. Costamagna G, Shah SK, Riccioni ME, Foschia F, Mutignani M, Perri V, Vecchioli A, Brizi MG, Picciocchi A, Marano P. A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease. Gastroenterology. 2002;123(4):999–1005.

    Article  PubMed  Google Scholar 

  23. Cramer H. Mathematical methods of statistics. Princeton: Princeton University Press; 1946.

    Google Scholar 

  24. Daniels ZA, Metaxas DN. Exploiting visual and report-based information for chest x-ray analysis by jointly learning visual classifiers and topic models. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI). IEEE; 2019. p. 1270–4.

    Google Scholar 

  25. Enns RA, Hookey L, Armstrong D, Bernstein CN, Heitman SJ, Teshima C, Leontiadis GI, Tse F, Sadowski D. Clinical practice guidelines for the use of video capsule endoscopy. Gastroenterology. 2017;152(3):497–514.

    Article  PubMed  Google Scholar 

  26. Fan DP, Ji GP, Zhou T, Chen G, Fu H, Shen J, Shao L. PraNet: Parallel reverse attention network for polyp segmentation. arXiv preprint arXiv:2006.11392. 2020.

    Google Scholar 

  27. Frye C, Rowat C, Feige I. Asymmetric shapley values: incorporating causal knowledge into model-agnostic explainability. 2020.

    Google Scholar 

  28. Fryer D, Strümke I, Nguyen H. Explaining the data or explaining a model? Shapley values that uncover non-linear dependencies. arXiv:abs/2007.06011. 2020.

    Google Scholar 

  29. Ghosh T, Fattah SA, Wahid KA. CHOBS: Color Histogram of Block Statistics for automatic bleeding detection in wireless capsule endoscopy video. IEEE J Transl Eng Health Med. 2018;6(May 2017):1800112.

    PubMed  Google Scholar 

  30. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Advances in neural information processing systems. Montreal, Canada. p. 2672–2680 (y).

    Google Scholar 

  31. Goyal M, Yap MH, Reeves ND, Rajbhandari S, Spragg J. Fully convolutional networks for diabetic foot ulcer segmentation. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2017. p. 618–23.

    Google Scholar 

  32. Guo YB, Matuszewski B. GIANA Polyp segmentation with fully convolutional dilation neural networks. In: Proceedings of International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications; 2019. p. 632–41.

    Google Scholar 

  33. Han Z, Wei B, Leung S, Chung J, Li S. Towards automatic report generation in spine radiology using weakly supervised framework. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2018. p. 185–93.

    Google Scholar 

  34. Hewett DG, Kahi CJ, Rex DK. Efficacy and effectiveness of colonoscopy: how do we bridge the gap? Gastrointest Endosc Clin. 2010;20(4):673–84.

    Article  Google Scholar 

  35. Hicks S, Riegler M, Pogorelov K, Anonsen KV, de Lange T, Johansen D, Jeppsson M, Ranheim Randel K, Losada Eskeland S, Halvorsen P. Dissecting deep neural networks for better medical image classification and classification understanding. In: Proceedings of IEEE International Symposium on Computer-Based Medical Systems (CBMS); 2018. p. 363–8.

    Google Scholar 

  36. Hicks S, Petlund A, de Lange T, Schmidt P, Halvorsen P, Riegler M, Smedsrud P, Haugen T, Randel K, Pogorelov K, Stensland H, Dang Nguyen DT, Lux M. Acm multimedia biomedia 2019 grand challenge overview. In: Proceedings of the ACM International Conference on Multimedia (ACM MM); 2019. p. 2563–7.

    Google Scholar 

  37. Hicks S, Smedsrud P, Riegler M, de Lange T, Petlund A, Eskeland S, Pogorelov K, Schmidt P, Halvorsen P. Deep learning for automatic generation of endoscopy reports. Gastrointest Endosc. 2019;89:AB77.

    Article  Google Scholar 

  38. Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need to build explainable ai systems for the medical domain? arXiv preprint arXiv:1712.09923. 2017.

    Google Scholar 

  39. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Disc. 2019;9(4):e1312.

    Google Scholar 

  40. Huettner F, Sunder M. Axiomatic arguments for decomposiing goodness of fit according to Shapley and Owen values. Electron J Stat. 2012;6:1239–50.

    Article  Google Scholar 

  41. International Agency for Research on Cancer, World Health Organization: Cancer Fact Sheets. 2020. https://gco.iarc.fr/today/fact-sheets-cancers

  42. International Medical Device Regulators Forum (IMDRF): Software as a Medical Device (SaMD): key definitions. 2013. http://www.imdrf.org/docs/imdrf/final/technical/imdrf-tech-131209-samd-key-definitions-140901.pdf

  43. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. p. 1125–34.

    Google Scholar 

  44. Israeli O. A Shapley-based decomposition of the R-square of a linear regression. J Econ Inequal. 2007;5:199–212.

    Article  Google Scholar 

  45. Jha D, Riegler MA, Johansen D, Halvorsen P, Johansen HD. Doubleu-net: a deep convolutional neural network for medical image segmentation. In: Proceedings of the IEEE International Symposium on Computer-Based Medical Systems (CBMS); 2020. p. 558–64.

    Google Scholar 

  46. Jha D, Ali S, Emanuelsen K, Hicks SA, Thambawita V, Garcia-Ceja E, Riegler MA, de Lange T, Schmidt PT, Johansen HD, Johansen D, Halvorsen P. Kvasir-instrument: diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy. 2020.

    Google Scholar 

  47. Jha D, Ali S, Johansen HD, Johansen D, Rittscher J, Riegler MA, Halvorsen P. Real-time polyp detection, localisation and segmentation in colonoscopy using deep learning. arXiv preprint arXiv:2006.11392. 2020.

    Google Scholar 

  48. Jha D, Hicks SA, Emanuelsen K, Johansen HD, Johansen D, de Lange T, Riegler MA, Halvorsen P. Medico multimedia task at mediaeval 2020:automatic polyp segmentation. In: Proceedings of the MediaEval 2020 Workshop; 2020.

    Google Scholar 

  49. Jha D, Smedsrud PH, Riegler MA, Halvorsen P, de Lange T, Johansen D, Johansen HD. Kvasir-SEG: a segmented polyp dataset. In: Proceedings of the International Conference on Multimedia Modeling (MMM); 2020. p. 451–62.

    Google Scholar 

  50. Jha D, Smedsrud PH, Riegler MA, Johansen D, De Lange T, Halvorsen P, Johansen HD. ResUNet++: an advanced architecture for medical image segmentation. In: Proceedings of International Symposium on Multimedia (ISM); 2019. p. 225–2255.

    Google Scholar 

  51. Jing B, Xie P, Xing E. On the automatic generation of medical imaging reports. arXiv preprint arXiv:1711.08195. 2017.

    Google Scholar 

  52. Kaminski MF, Regula J, Kraszewska E, Polkowski M, Wojciechowska U, Didkowska J, Zwierko M, Rupinski M, Nowacki MP, Butruk E. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med. 2010;362(19):1795–803.

    Article  CAS  PubMed  Google Scholar 

  53. Karkanis SA, Iakovidis DK, Karras DA, Maroulis DE. Detection of lesions in endoscopic video using textural descriptors on wavelet domain supported by artificial neural network architectures. In: Proceedings the International Conference on Image Processing; 2001. p. 833–6.

    Google Scholar 

  54. Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR); 2019. p. 4401–10.

    Google Scholar 

  55. Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR); 2020.

    Google Scholar 

  56. Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev. 2020;53(8):5455–516.

    Article  Google Scholar 

  57. Ko WJ, An P, Ko KH, Hahm KB, Hong SP, Cho JY. Image quality analysis of various gastrointestinal endoscopes: why image quality is a prerequisite for proper diagnostic and therapeutic endoscopy. Clin Endosc. 2015;48(5):374.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Koulaouzidis A, Iakovidis DK, Yung DE, Rondonotti E, Kopylov U, Plevris JN, Toth E, Eliakim A, Johansson GW, Marlicz W, Mavrogenis G, Nemeth A, Thorlacius H, Tontini GE. Kid project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc Int Open. 2017;5(6):E477–83.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Krishnan SM, Yang X, Chan KL, Kumar S, Goh PMY. Intestinal abnormality detection from endoscopic images. In: Proceedings of the IEEE Annual International Conference of the Engineering in Medicine and Biology Society; 1998. p. 895–8.

    Google Scholar 

  60. Kundu AK, Fattah SA, Rizve MN. An automatic bleeding frame and region detection scheme for wireless capsule endoscopy videos based on interplane intensity variation profile in normalized RGB color space. J Healthc Eng. 2018;2018:1.

    Article  Google Scholar 

  61. Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, Fournier L, Smaïl-Tabbone M, Danese S, Peyrin-Biroulet L. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology. 2020;158(1):76–94.

    Article  PubMed  Google Scholar 

  62. Lee H, Kim ST, Ro YM. Generation of multimodal justification using visual word constraint model for explainable computer-aided diagnosis. In: Suzuki K, Reyes M, Syeda-Mahmood T, Glocker B, Wiest R, Gur Y, Greenspan H, Madabhushi A, editors. Interpretability of machine intelligence in medical image computing and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2019. p. 21–9.

    Chapter  Google Scholar 

  63. Lee JY, Jeong J, Song EM, Ha C, Lee HJ, Koo JE, Yang DH, Kim N, Byeon JS. Real-time detection of colon polyps during colonoscopy using deep learning: systematic validation with four independent datasets. Sci Rep. 2020;10(1):1–9.

    CAS  Google Scholar 

  64. Lee S, Jang B, Kim KO, Jeon S, Kwon J, Kim E, Jung J, Park K, Cho K, Kim ES, Park C, Yang C. Endoscopic experience improves interobserver agreement in the grading of esophagitis by los angeles classification: conventional endoscopy and optimal band image system. Gut Liver. 2014;8:154–9.

    Article  PubMed  Google Scholar 

  65. Leenhardt R, Li C, Mouel JP, Rahmi G, Sabourin JC, Cholet F, Boureille A, Amiot X, Delvaux M, Duburque C, Leandri C, Gerard R, Lecleire S, Mesli F, Nion-Larmurier I, Romain O, Sacher-Huvelin S, Simon-Shane C, Vanbiervliet G, Dray X. Cad-cap: a 25,000-image database serving the development of artificial intelligence for capsule endoscopy. Endosc Int Open. 2020;8:E415.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lipovetsky S, Conklin M. Analysis of regression in game theory approach. Appl Stoch Model Bus Ind. 2001;17:319–30.

    Article  Google Scholar 

  67. Liu Q, Yu L, Luo L, Dou Q, Heng PA, Heng PA. Semi-supervised medical image classification with relation-driven self-ensembling model. IEEE Trans Med Imaging. 2020;39:3429.

    Article  PubMed  Google Scholar 

  68. Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, editors. Advances in neural information processing systems, vol. 30. Curran Associates; 2017. p. 4765–74. http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.

    Google Scholar 

  69. Lux M, Chatzichristofis SA. Lire: lucene image retrieval: an extensible java cbir library. In: Proceedings of the ACM International Conference on Multimedia (ACM MM); 2008. p. 10851088.

    Google Scholar 

  70. Madani A, Moradi M, Karargyris A, Syeda-Mahmood T. Semisupervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation. In: Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI); 2018. p. 1038–42.

    Google Scholar 

  71. Mahmud T, Paul B, Fattah SA. PolypSegNet: a modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images. Comput Biol Med. 2020;128:104119.

    Article  PubMed  Google Scholar 

  72. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784. 2014.

    Google Scholar 

  73. Misawa M, Kudo SE, Mori Y, Hotta K, Ohtsuka K, Matsuda T, Saito S, Kudo T, Baba T, Ishida F, Itoh H, Oda M, Mori K. Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). Gastrointest Endosc. 2020;93(4):960–967.e3.

    Google Scholar 

  74. Norman B, Pedoia V, Majumdar S. Use of 2d u-net convolutional neural networks for automated cartilage and meniscus segmentation of knee mr imaging data to determine relaxometry and morphometry. Radiology. 2018;288(1):177–85.

    Article  PubMed  Google Scholar 

  75. Park SY, Sargent D, Spofford I, Vosburgh KG, A-Rahim Y. A colon video analysis framework for polyp detection. IEEE Trans Biomed Eng. 2012;59(5):1408–18.

    Article  PubMed  Google Scholar 

  76. Pogorelov K, Riegler M, Halvorsen P, Griwodz C, Lange T, Randel K, Eskeland S, Dang-Nguyen DT, Ostroukhova O, Lux M, Spampinato C. A comparison of deep learning with global features for gastrointestinal disease detection. In: CEUR Workshop Proceedings MediaEval, vol. 1984; 2017. p. 8–10.

    Google Scholar 

  77. Pogorelov K, Randel K, Griwodz C, de Lange T, Eskeland S, Johansen D, Spampinato C, Dang Nguyen DT, Lux M, Schmidt P, Riegler M, Halvorsen P. Kvasir: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of ACM Multimedia Systems (MMSYS); 2017.

    Google Scholar 

  78. Pogorelov K, Randel K, de Lange T, Eskeland S, Johansen D, Griwodz C, Spampinato C, Taschwer M, Lux M, Schmidt P, Riegler M, Halvorsen P. Nerthus: a bowel preparation quality video dataset. In: Proceedings of ACM Multimedia Systems (MMSYS); 2017.

    Google Scholar 

  79. Pogorelov K, Riegler M, Halvorsen P, Hicks S, Randel KR, Dang Nguyen DT, Lux M, Ostroukhova O, de Lange T. Medico multimedia task at mediaeval 2018. In: CEUR Workshop Proceedings-MediaEval; 2018.

    Google Scholar 

  80. Polit DF. Blinding during the analysis of research data. Int J Nurs Stud. 2011;48(5):636–41. http://www.sciencedirect.com/science/article/pii/S0020748911000496

    Article  PubMed  Google Scholar 

  81. Qadir HA, Balasingham I, Solhusvik J, Bergsland J, Aabakken L, Shin Y. Improving automatic polyp detection using cnn by exploiting temporal dependency in colonoscopy video. IEEE J Biomed Health Inform. 2020;24(1):180–93.

    Article  PubMed  Google Scholar 

  82. Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: understanding transfer learning for medical imaging. In: Proceedings of Advances in Neural Information Processing Systems (NeurIPS); 2019. p. 3347–57.

    Google Scholar 

  83. Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, Rondonotti E, Ferrara E, Spadaccini M, Alkandari A, Fugazza A, Anderloni A, Galtieri PA, Pellegatta G, Carrara S, Di Leo M, Craviotto V, Lamonaca L, Lorenzetti R, Andrealli A, Antonelli G, Wallace M, Sharma P, Rosch T, Hassan C. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology. 2020;159(2):512–20. http://www.sciencedirect.com/science/article/pii/S0016508520305837

    Article  PubMed  Google Scholar 

  84. Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’16. New York: Association for Computing Machinery; 2016. p. 11351144. https://doi.org/10.1145/2939672.2939778.

    Chapter  Google Scholar 

  85. Riegler M, Pogorelov K, Halvorsen P, de Lange T, Griwodz C, Schmidt PT, Eskeland SL, Johansen D. EIR Efficient computer aided diagnosis framework for gastrointestinal endoscopies. In: Proceeding of the International Workshop on Content-Based Multimedia Indexing (CBMI); 2016. p. 1–6.

    Google Scholar 

  86. Riegler M, Lux M, Griwodz C, Spampinato C, de Lange T, Eskeland SL, Pogorelov K, Tavanapong W, Schmidt PT, Gurrin C, Johansen D, Johansen H, Halvorsen P. Multimedia and medicine: teammates for better disease detection and survival. In: Proceedings of the ACM International Conference on Multimedia (ACM MM); 2016. p. 968–77. http://doi.acm.org/10.1145/2964284.2976760.

    Google Scholar 

  87. Riegler M, Pogorelov K, Eskeland SL, Schmidt PT, Albisser Z, Johansen D, Griwodz C, Halvorsen P, Lange TD. From annotation to computer-aided diagnosis: detailed evaluation of a medical multimedia system. ACM Trans Multimed Comput Commun Appl. 2017; https://doi.org/10.1145/3079765.

  88. Rondonotti E, Soncini M, Girelli CM, Russo A, Ballardini G, Bianchi G, Cant P, Centenara L, Cesari P, Cortelezzi CC, Gozzini C, Lupinacci G, Maino M, Mandelli G, Mantovani N, Moneghini D, Morandi E, Putignano R, Schalling R, Tatarella M, Vitagliano P, Villa F, Zatelli S, Conte D, Masci E, de Franchis R. Can we improve the detection rate and interobserver agreement in capsule endoscopy? Dig Liver Dis. 2012;44(12):1006–11. http://www.sciencedirect.com/science/article/pii/S1590865812002368

    Article  PubMed  Google Scholar 

  89. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Proceeding of the International Conference on Medical image computing and computer-assisted intervention (MICCAI). Springer; 2015. p. 234–41.

    Google Scholar 

  90. Ross T, Reinke A, Full PM, Wagner M, Kenngott H, Apitz M, Hempe H, Filimon DM, Scholz P, Tran TN, Bruno P, Arbelez P, Bian GB, Bodenstedt S, Bolmgren JL, Bravo-Snchez L, Chen HB, Gonzlez C, Guo D, Halvorsen P, Heng PA, Hosgor E, Hou ZG, Isensee F, Jha D, Jiang T, Jin Y, Kirtac K, Kletz S, Leger S, Li Z, Maier-Hein KH, Ni ZL, Riegler MA, Schoeffmann K, Shi R, Speidel S, Stenzel M, Twick I, Wang G, Wang J, Wang L, Wang L, Zhang Y, Zhou YJ, Zhu L, Wiesenfarth M, Kopp-Schneider A, Mller-Stich BP, Maier-Hein L. Robust medical instrument segmentation challenge 2019. 2020.

    Google Scholar 

  91. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015;10(3):e0118432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Shapley LS. A value for n-person games. Contrib Theory Games. 1953;2(28):307–17.

    Google Scholar 

  93. Shin Y, Qadir HA, Balasingham I. Abnormal colon polyp image synthesis using conditional adversarial networks for improved detection performance. IEEE Access. 2018;6:56007–17.

    Article  Google Scholar 

  94. Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. CoRR abs/1704.02685. 2017. http://arxiv.org/abs/1704.02685

  95. Silva J, Histace A, Romain O, Dray X, Granado B. Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. Int J Comput Assist Radiol Surg. 2014;9(2):283–93.

    Article  PubMed  Google Scholar 

  96. Smedsrud PH, Gjestang HL, Nedrejord OO, Næss E, Thambawita V, Hicks SA, Borgli H, Jha D, Berstad TJD, Eskeland SL, Lux M, Espeland H, Petlund A, Dang-Nguyen DT, Garcia-Ceja E, Johansen D, Schmidt PT, Hammer HL, de Lange T, Riegler M, Halvorsen P. Kvasir-capsule, a video capsule endoscopy dataset. OSF Preprints. 2020. https://doi.org/10.31219/osf.io/gr7bn

  97. Tajbakhsh N, Gurudu SR, Liang J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans Med Imag. 2015;35(2):630–44.

    Article  Google Scholar 

  98. Thambawita V, Jha D, Hammer HL, Johansen HD, Johansen D, Halvorsen P, Riegler MA. An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification. ACM Trans Comput Healthc. 2020;1(3). https://doi.org/10.1145/3386295

  99. Thambawita V, Jha D, Riegler M, Halvorsen P, Hammer HL, Johansen H, Johansen D. The medico-task 2018: disease detection in the gastrointestinal tract using global features and deep learning. In: CEUR Workshop Proceedings -MediaEval; 2018.

    Google Scholar 

  100. Tomar NK, Jha D, Ali S, Johansen HD, Johansen D, Riegler MA, Halvorsen P. DDANet: Dual Decoder Attention Network forAutomatic Polyp Segmentation. arXiv preprint arXiv:2006.11392. 2020.

    Google Scholar 

  101. Tommasi T, Tuytelaars T. A testbed for cross-dataset analysis. In: European Conference on Computer Vision. Springer; 2014. p. 18–31.

    Google Scholar 

  102. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  103. Torralba A, Efros AA. Unbiased look at dataset bias. In: Proceedings of the International Conference on Pattern Recongition (CVPR). IEEE; 2011. p. 1521–8.

    Google Scholar 

  104. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  105. U.S. Food and Drug Administration: Learn if a medical device has been cleared by FDA for marketing. 2017. https://www.fda.gov/medical-devices/consumers-medical-devices/learn-if-medical-device-has-been-cleared-fda-marketing

  106. U.S. Food and Drug Administration: Digital health innovation action plan. 2018. https://www.fda.gov/media/106331/download

  107. U.S. Food and Drug Administration: FDA permits marketing of artificial intelligence algorithm for aiding providers in detecting wrist fractures. 2018. https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-artificial-intelligence-algorithm-aiding-providers-detecting-wrist-fractures

  108. Van Doorn SC, Hazewinkel Y, East JE, Van Leerdam ME, Rastogi A, Pellisé M, Sanduleanu-Dascalescu S, Bastiaansen BA, Fockens P, Dekker E. Polyp morphology: an interobserver evaluation for the Paris classification among international experts. Am J Gastroenterol. 2015;110(1):180.

    Article  PubMed  Google Scholar 

  109. Wang P, Xiao X, Brown J, Berzin T, Tu M, Xiong F, Hu X, Liu P, Song Y, Zhang D, Yang X, Li L, He J, Yi X, Liu J, Liu X, Lai L. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biotechnol. 2018;2:741–8.

    Google Scholar 

  110. Wang Y, Tavanapong W, Wong J, Oh J, de Groen PC. Part-based multiderivative edge cross-sectional profiles for polyp detection in colonoscopy. IEEE J Biomed Health Inform. 2014;18(4):1379–89.

    Article  PubMed  Google Scholar 

  111. Wang Y, Tavanapong W, Wong J, Oh JH, De Groen PC. Polypalert: near real-time feedback during colonoscopy. Comput Methods Progr Biomed. 2015;120(3):164–79.

    Article  Google Scholar 

  112. Wei J, Suriawinata A, Vaickus L, Ren B, Liu X, Lisovsky M, Tomita N, Abdollahi B, Kim A, Snover D, Baron J, Barry E, Hassanpour S. Evaluation of a deep neural network for automated classification of colorectal polyps on histopathologic slides. JAMA Netw Open. 2020;3:e203398.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wickstrm K, Kampffmeyer M, Jenssen R. Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps. Med Image Anal. 2020;60:101619. http://www.sciencedirect.com/science/article/pii/S1361841519301574

    Article  Google Scholar 

  114. Wickstrøm K, Kampffmeyer M, Jenssen R. Uncertainty modeling and interpretability in convolutional neural networks for polyp segmentation. In: Proceedings of the IEEE international workshop on machine learning for signal processing (MLSP). IEEE; 2018. p. 1–6.

    Google Scholar 

  115. Woolhandler S, Himmelstein DU. Administrative work consumes one-sixth of U.S. physicians working hours and lowers their career satisfaction. Int J Health Serv. 2014;44(4):63542.

    Article  Google Scholar 

  116. Wu H, Prasad S. Semi-supervised deep learning using pseudo labels for hyperspectral image classification. IEEE Trans Image Process. 2018;27(3):1259–70.

    Article  Google Scholar 

  117. Xie Q, Luong MT, Hovy E, Le QV. Self-training with Noisy Student improves ImageNet classification. arXiv. 2020. http://arxiv.org/abs/1911.04252

  118. Xue Y, Xu T, Long LR, Xue Z, Antani S, Thoma GR, Huang X. Multimodal recurrent model with attention for automated radiology report generation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2018. p. 457–66.

    Google Scholar 

  119. Yang J, Faraji M, Basu A. Robust segmentation of arterial walls in intravascular ultrasound images using dual path u-net. Ultrasonics. 2019;96:24–33.

    Article  PubMed  Google Scholar 

  120. Zhang C, Tavanapong W, Wong J, de Groen PC, Oh J. Real data augmentation for medical image classification. In: Cardoso MJ, Arbel T, Lee SL, Cheplygina V, Balocco S, Mateus D, Zahnd G, Maier-Hein L, Demirci S, Granger E, Duong L, Carbonneau MA, Albarqouni S, Carneiro G, editors. Intravascular imaging and computer assisted stenting, and large-scale annotation of biomedical data and expert label synthesis, vol. 10552. Springer International Publishing; 2017. p. 67–76. http://link.springer.com/10.1007/978-3-319-67534-3_8.

    Google Scholar 

  121. Zhang Z, Xie Y, Xing F, McGough M, Yang L. Mdnet: a semantically and visually interpretable medical image diagnosis network. In: Proceedings of IEEE CVPR; 2017. p. 6428–36.

    Google Scholar 

  122. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: a nested u-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer; 2018. p. 3–11.

    Chapter  Google Scholar 

  123. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision; 2017. p. 2223–32.

    Google Scholar 

Download references

Acknowledgments

This work is funded in part by the Research Council of Norway, project number 282315 (AutoCap).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Halvorsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Strümke, I. et al. (2021). Artificial Intelligence in Medicine. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_163-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_163-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Artificial Intelligence in Gastroenterology
    Published:
    27 October 2021

    DOI: https://doi.org/10.1007/978-3-030-58080-3_163-2

  2. Original

    Artificial Intelligence in Medicine
    Published:
    14 September 2021

    DOI: https://doi.org/10.1007/978-3-030-58080-3_163-1