Skip to main content

Artificial Intelligence in Infectious Diseases

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

The management of infectious diseases lends itself to the application of artificial intelligence. The treatment of infection is complex, requiring the consideration of a large number of dynamic variables to inform decision-making. This includes considering organism, host, and drug factors in the context of local disease epidemiology and potential long-term consequences of anti-infective use, such as the development of antimicrobial resistance. The heterogeneity of clinical presentation caused by the same pathogen means that in many cases there is a paucity of data available to guide decision-making in real time, with individualized decisions made based on the individual patient and available data. Within this chapter we explore current applications of artificial intelligence in (i) the laboratory detection of microorganisms, (ii) the clinical diagnosis and management of infectious diseases, and (iii) the surveillance of infection. This chapter will not address other potential areas for the application of AI in infectious diseases that include anti-infective drug development, targeting infection prevention activity, and public health decision-making. We highlight potential future directions for AI in infectious diseases within the areas explored by this chapter and current barriers to wider adoption of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. McGregor JC, Weekes E, Forrest GN. Impact of a computerized clinical decision support system on reducing inappropriate antimicrobial use: a randomized controlled trial. J Am Med Inform Assoc. 2006;13:378–84.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Pantelis G, Lescure FX, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. 2020;26:584–95.

    Article  CAS  PubMed  Google Scholar 

  3. Peiffer-Smadja N, Dellière S, Rodriguez C, Birgand G, Lescure FX, Fourati S, et al. Machine learning in the clinical microbiology laboratory: has the time come for routine practice? Clin Microbiol Infect. 2020;26:1300–9.

    Article  CAS  PubMed  Google Scholar 

  4. Rawson TM, Butters TP, Moore LSP, Castro-Sánchez E, Cooke FJ, Holmes AH. Exploring the coverage of antimicrobial stewardship across UK clinical postgraduate training curricula. J Antimicrob Chemother. 2016;71:3284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castro-Sánchez E, Drumright LN, Gharbi M, Farrell S, Holmes AH. Mapping antimicrobial stewardship in undergraduate medical, dental, pharmacy, nursing and veterinary education in the United Kingdom. PLoS One. 2016;11:1–10.

    Article  Google Scholar 

  6. Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27:783–822.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Weis CV, Jutzeler CR, Borgwardt K. Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review. Clin Microbiol Infect. 2020;26:1310–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ho C-S, Jean N, Hogan CA, Blackmon L, Jeffrey SS, Holodniy M, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun. 2019;10:4927.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park HS, Rinehart MT, Walzer KA, Chi J-TA, Wax A. Automated detection of P. falciparum using machine learning algorithms with quantitative phase images of unstained cells. PLoS One. 2016;11:e0163045.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang YS, Park DK, Kim HC, Choi MH, Chai JY. Automatic identification of human helminth eggs on microscopic fecal specimens using digital image processing and an artificial neural network. IEEE Trans Biomed Eng. 2001;48:718–30.

    Article  CAS  PubMed  Google Scholar 

  11. Bzhalava Z, Tampuu A, Bała P, Vicente R, Dillner J. Machine learning for detection of viral sequences in human metagenomic datasets. BMC Bioinformatics. 2018;19:336.

    Article  PubMed  PubMed Central  Google Scholar 

  12. EUCAST. Disk diffusion method for antimicrobial susceptibility testing-antimicrobial susceptibility testing EUCAST disk diffusion method. 2021.

    Google Scholar 

  13. Ruppé E, Cherkaoui A, Lazarevic V, Emonet S, Schrenzel J. Establishing genotype-to-phenotype relationships in bacteria causing hospital-acquired pneumonia: a prelude to the application of clinicalmetagenomics. Antibiotics. 2017;6:1–15.

    Article  Google Scholar 

  14. Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo T-H, Oliver A, et al. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol Med. 2020;12:e10264. https://doi.org/10.15252/emmm.201910264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhattacharyya RP, Bandyopadhyay N, Ma P, Son SS, Liu J, He LL, et al. Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination. Nat Med. 2019;25:1858–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gumbo T, Chigutsa E, Pasipanodya J, Visser M, van Helden PD, Sirgel FA, et al. The pyrazinamide susceptibility breakpoint above which combination therapy fails. J Antimicrob Chemother. 2014;69:2420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moniri A, Miglietta L, Malpartida-Cardenas K, Pennisi I, Cacho-Soblechero M, Moser N, et al. Amplification curve analysis: data-driven multiplexing using real-time digital PCR. Anal Chem. 2020;92:13134–43.

    Article  CAS  PubMed  Google Scholar 

  18. Langelier C, Kalantar KL, Moazed F, Wilson MR, Crawford ED, Deiss T, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc Natl Acad Sci. 2018;115:E12353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jong VL, Ahout IML, van den Ham H-J, Jans J, Zaaraoui-Boutahar F, Zomer A, et al. Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants. Sci Rep. 2016;6:36603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Staley C, Kaiser T, Vaughn BP, Graiziger CT, Hamilton MJ, Rehman T u, et al. Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome. 2018;6:166.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burton RJ, Albur M, Eberl M, Cuff SM. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med Inform Decis Mak. 2019;19:171.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother. 2010;54:4851–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paul M, Andreassen S, Nielsen AD, Tacconelli E, Almanasreh N, Fraser A, et al. Prediction of bacteremia using TREAT, a computerized decision-support system. Clin Infect Dis. 2006;42:1274–82.

    Article  PubMed  Google Scholar 

  25. Paul M, Nielsen AD, Goldberg E, Andreassen S, Tacconelli E, Almanasreh N, et al. Prediction of specific pathogens in patients with sepsis: evaluation of TREAT, a computerized decision support system. J Antimicrob Chemother. 2007;59:1204–7.

    Article  CAS  PubMed  Google Scholar 

  26. Richardson A, Hawkins S, Shadabi F, Sharma D, Fulcher J. Enhanced laboratory diagnosis of human Chlamydia pneumoniae infection through pattern recognition derived from pathology database analysis. In: Third IAPR international conference on pattern recognition in bioinformatics (PRIB 2008). Monash University; 2008. p. 227–34.

    Google Scholar 

  27. Richardson AM, Lidbury BA. Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data. BMC Bioinformatics. 2013;14:206.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rawson TM, Hernandez B, Moore LSP, Blandy O, Herrero P, Gilchrist M, et al. Supervised machine learning for the prediction of infection on admission to hospital: a prospective observational cohort study. J Antimicrob Chemother. 2019;74:1108–15.

    Article  CAS  PubMed  Google Scholar 

  29. Sauer CM, Sasson D, Paik KE, McCague N, Celi LA, Sánchez Fernández I, et al. Feature selection and prediction of treatment failure in tuberculosis. PLoS One. 2018;13:e0207491.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yelin I, Snitser O, Novich G, Katz R, Tal O, Parizade M, et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat Med. 2019;25:1143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oonsivilai M, Mo Y, Luangasanatip N, Lubell Y, Miliya T, Tan P, et al. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children’s hospital in Cambodia. Wellcome Open Res. 2018;3:131.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Daly R, Shen Q, Aitken S. Learning Bayesian networks: approaches and issues. Knowl Eng Rev. 2011;26:99–157.

    Article  Google Scholar 

  33. Pantic M. Introduction to machine learning & case-based reasoning. Imperial College London; 2006. https://ibug.doc.ic.ac.uk/media/uploads/documents/courses/syllabus-CBR.pdf.

  34. Watson I, Marir F. Case-based reasoning: a review. Knowl Eng Rev. 2017;94:327–54.

    Google Scholar 

  35. Godo L, Puyol-Gruart J, Sabater J, Torra V, Barrufet P, Fàbregas X. A multi-agent system approach for monitoring the prescription of restricted use antibiotics. Artif Intell Med. 2003;27:259–82.

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt R, Gierl L. Case-based reasoning for antibiotics therapy advice: an investigation of retrieval algorithms and prototypes. Artif Intell Med. 2001;23:171–86.

    Article  CAS  PubMed  Google Scholar 

  37. Heindl B, Schmidt R, Schmid G, Haller M, Pfaller P, Gierl L, et al. A case-based consiliarius for therapy recommendation (ICONS): computer-based advice for calculated antibiotic therapy in intensive care medicine. Comput Methods Biomed. 1997;52:117–27.

    Article  CAS  Google Scholar 

  38. Rawson TM, Hernandez B, Moore LSP, Herrero P, Charani E, Ming D, et al. A real-world evaluation of a case-based reasoning algorithm to support antimicrobial prescribing decisions in acute care. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa383.

  39. Okeke IN, Feasey N, Parkhill J, Turner P, Limmathurotsakul D, Georgiou P, et al. Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Glob Heal. 2020;5:e003622.

    Article  Google Scholar 

  40. Fitzpatrick F, Doherty A, Lacey G. Using artificial intelligence in infection prevention. Curr Treat Options Infect Dis. 2020;12:135–44.

    Article  Google Scholar 

  41. Rawson TM, Ming D, Gowers SA, Freeman DM, Herrero P, Georgiou P, Cass AE, O’Hare D, Holmes AH. Public acceptability of computer-controlled antibiotic management: an exploration of automated dosing and opportunities for implementation. J Infect. 2019;78(1):75–86

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Pantelis Georgiou, Dr. Pau Herrero, and Dr. Bernard Hernandez from the Center for Bioinspired technology, Imperial College London, UK. They also acknowledge the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in healthcare-associated infection and antimicrobial resistance at Imperial College London in partnership with Public Health England and the NIHR Imperial Patient Safety Translational Research Center. The Department of Health and Social Care funded Center for Antimicrobial Optimization (CAMO), Imperial College London, provides state-of-the-art research facilities and consolidates multidisciplinary academic excellence, clinical expertise, Imperial’s NIHR/Wellcome funded Clinical Research Facility (CRF), and partnerships with the NHS to support and deliver innovative research on antimicrobial optimization and precision prescribing. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research or the UK Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Holmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rawson, T.M., Peiffer-Smadja, N., Holmes, A. (2021). Artificial Intelligence in Infectious Diseases. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_103-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_103-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics