Skip to main content

QM/MM Study of Bioluminescent Systems

  • Chapter
  • First Online:
QM/MM Studies of Light-responsive Biological Systems

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 31))

Abstract

Bioluminescence is a chemical reaction of (usually multi-steps) oxidation of a substrate (luciferin) in the presence of an enzyme (luciferase). The oxidation leads to a product in its electronic excited state, which releases the chemical energy in the form of light. Quantum mechanic/molecular mechanic (QM/MM) methods are approaches of choice to study bioluminescent reactions as they allow the study of electronic transitions taking into account the protein environment. In this chapter, we will present the QM/MM methods that are used for studying bioluminescent reactions. How the enzymatic environment can be taken into account? What are the difficulties to describe the excited states? Which experimental data are needed to be able to perform studies of bioluminescent systems? How simulations can help interpreting and predicting experimental observation? Tentative answers to these questions and some examples of studies of firefly’s bioluminescent system have been reported in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40(1):537–541. https://doi.org/10.1093/nar/gks375

  2. Andersson K, Malmqvist PÅ, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96(2):1218–1226. https://doi.org/10.1063/1.462209

    Article  CAS  Google Scholar 

  3. Ando Y, Akiyama H (2010) pH-dependent fluorescence spectra, lifetimes, and quantum yields of firefly-luciferin aqueous solutions studied by selective-excitation fluorescence spectroscopy. Jpn J Appl Phys 49(11R):117002. https://doi.org/10.1143/jjap.49.117002

    Article  Google Scholar 

  4. Ando Y, Niwa K, Yamada N, Enomoto T, Irie T, Kubota H, Ohmiya Y, Akiyama H (2008) Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nat Photonics 2(1):44–47. https://doi.org/10.1038/nphoton.2007.251

    Article  CAS  Google Scholar 

  5. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) Introduction of \(n\)-electron valence states for multireference perturbation theory. J Chem Phys 114(23):10252–10264. https://doi.org/10.1063/1.1361246

    Article  CAS  Google Scholar 

  6. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  Google Scholar 

  7. Berraud-Pache R, Navizet I (2016) QM/MM calculations on a newly synthesised oxyluciferin substrate: new insights into the conformational effect. Phys Chem Chem Phys 18(39):27460–27467. https://doi.org/10.1039/c6cp02585d

    Article  CAS  PubMed  Google Scholar 

  8. Berraud-Pache R, Lindh R, Navizet I (2018) QM/MM study of the formation of the dioxetanone ring in fireflies through a superoxide ion. J Phys Chem B 122(20):5173–5182. https://doi.org/10.1021/acs.jpcb.8b00642, pMID: 29659277

  9. Branchini BR, Ablamsky DM, Murtiashaw MH, Uzasci L, Fraga H, Southworth TL (2007) Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 361(2):253–262. https://doi.org/10.1016/j.ab.2006.10.043

    Article  CAS  PubMed  Google Scholar 

  10. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107(8):3032–3041. https://doi.org/10.1063/1.474659

    Article  CAS  Google Scholar 

  11. Carrasco-López C, Ferreira JC, Lui NM, Schramm S, Berraud-Pache R, Navizet I, Panjikar S, Naumov P, Rabeh WM (2018) Beetle luciferases with naturally red- and blue-shifted emission. Life Sci Alliance 1(4). https://doi.org/10.26508/lsa.201800072

  12. Casida ME (1995) Time-dependent density functional response theory for molecules. World Scientific, Singapore, chap 5:155–192. https://doi.org/10.1142/9789812830586_0005

    Article  Google Scholar 

  13. Chen SF, Liu YJ, Navizet I, Ferré N, Fang WH, Lindh R (2011) Systematic theoretical investigation on the light emitter of firefly. J Chem Theory Comput 7(3):798–803. https://doi.org/10.1021/ct200045q

    Article  CAS  PubMed  Google Scholar 

  14. Chen SF, Navizet I, Roca-Sanjuán D, Lindh R, Liu YJ, Ferré N (2012) Chemiluminescence of coelenterazine and fluorescence of coelenteramide: a systematic theoretical study. J Chem Theory Comput 8(8):2796–2807. https://doi.org/10.1021/ct300356j

    Article  CAS  PubMed  Google Scholar 

  15. Chen SF, Ferré N, Liu YJ (2013) QM/MM study on the light emitters of aequorin chemiluminescence, bioluminescence, and fluorescence: a general understanding of the bioluminescence of several marine organisms. Chem-Eur J 19(26):8466–8472. https://doi.org/10.1002/chem.201300678

    Article  CAS  PubMed  Google Scholar 

  16. Cheng YY, Liu YJ (2016) Vibrationally resolved absorption and fluorescence spectra of firefly luciferin: a theoretical simulation in the gas phase and in solution. Photochem Photobiol 92(4):552–560. https://doi.org/10.1111/php.12601

    Article  CAS  PubMed  Google Scholar 

  17. Cheng YY, Liu YJ (2019) Luciferin regeneration in firefly bioluminescence via proton-transfer-facilitated hydrolysis, condensation and chiral inversion. ChemPhysChem 20(13):1719–1727. https://doi.org/10.1002/cphc.201900306

    Article  CAS  PubMed  Google Scholar 

  18. Dapprich S, Komáromi I, Byun K, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct: THEOCHEM 461–462:1–21. https://doi.org/10.1016/S0166-1280(98)00475-8

    Article  Google Scholar 

  19. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Bryan AIW, Snoeyink J, Richardson JS, Richardson DC (2007) Molprobity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35(2):375–383. https://doi.org/10.1093/nar/gkm216

    Article  Google Scholar 

  20. Dubinnyi MA, Kaskova ZM, Rodionova NS, Baranov MS, Gorokhovatsky AY, Kotlobay A, Solntsev KM, Tsarkova AS, Petushkov VN, Yampolsky IV (2015) Novel mechanism of bioluminescence: oxidative decarboxylation of a moiety adjacent to the light emitter of Fridericia luciferin. Angew Chem Int Ed 54(24):7065–7067. https://doi.org/10.1002/anie.201501668

    Article  CAS  Google Scholar 

  21. Ferré N, Ángyán JG (2002) Approximate electrostatic interaction operator for QM/MM calculations. Chem Phys Lett 356(3–4):331–339. https://doi.org/10.1016/s0009-2614(02)00343-3

    Article  Google Scholar 

  22. Finley J, Malmqvist PÅ, Roos BO, Serrano-Andrés L (1998) The multi-state CASPT2 method. Chem Phys Lett 288(2–4):299–306. https://doi.org/10.1016/s0009-2614(98)00252-8

    Article  CAS  Google Scholar 

  23. García-Iriepa C, Navizet I (2019) Effect of protein conformation and amp protonation state on fireflies’ bioluminescent emission. Molecules 24(8). https://doi.org/10.3390/molecules24081565

  24. García-Iriepa C, Gosset P, Berraud-Pache R, Zemmouche M, Taupier G, Dorkenoo KD, Didier P, Léonard J, Ferré N, Navizet I (2018) Simulation and analysis of the spectroscopic properties of oxyluciferin and its analogues in water. J Chem Theory Comput 14(4):2117–2126. https://doi.org/10.1021/acs.jctc.7b01240

    Article  CAS  PubMed  Google Scholar 

  25. García-Iriepa C, Zemmouche M, Ponce-Vargas M, Navizet I (2019) The role of solvation models on the computed absorption and emission spectra: the case of fireflies oxyluciferin. Phys Chem Chem Phys 21:4613–4623. https://doi.org/10.1039/C8CP07352J

    Article  PubMed  Google Scholar 

  26. Ghose A, Rebarz M, Maltsev OV, Hintermann L, Ruckebusch C, Fron E, Hofkens J, Mély Y, Naumov P, Sliwa M, Didier P (2015) Emission properties of oxyluciferin and its derivatives in water: revealing the nature of the emissive species in firefly bioluminescence. J Phys Chem B 119(6):2638–2649. https://doi.org/10.1021/jp508905m, pMID: 25364813

  27. Gnandt D, Na S, Koslowski T (2018) Simulating biological charge transfer: continuum dielectric theory or molecular dynamics? Biophys Chem 241:1–7. https://doi.org/10.1016/j.bpc.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  28. Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2(1):443–493. https://doi.org/10.1146/annurev-marine-120308-081028

    Article  Google Scholar 

  29. Hehre WJ, Stewart RF, Pople JA (1969) Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of slater-type atomic orbitals. J Chem Phys 51(6):2657–2664. https://doi.org/10.1063/1.1672392

  30. Hiyama M, Noguchi Y, Akiyama H, Yamada K, Koga N (2015) Vibronic structures in absorption and fluorescence spectra of firefly oxyluciferin in aqueous solutions. Photochem Photobiol 91(4):819–827. https://doi.org/10.1111/php.12463

    Article  CAS  PubMed  Google Scholar 

  31. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Struct Funct Bioinform 65(3):712–725. https://doi.org/10.1002/prot.21123

  32. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell AD (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14(1):71–73. https://doi.org/10.1038/nmeth.4067

    Article  CAS  Google Scholar 

  33. Ikeda Y, Saitoh T, Niwa K, Nakajima T, Kitada N, Maki SA, Sato M, Citterio D, Nishiyama S, Suzuki K (2018) An allylated firefly luciferin analogue with luciferase specific response in living cells. Chem Commun 54:1774–1777. https://doi.org/10.1039/C7CC09720D

    Article  CAS  Google Scholar 

  34. Ioka S, Saitoh T, Iwano S, Suzuki K, Maki SA, Miyawaki A, Imoto M, Nishiyama S (2016) Synthesis of firefly luciferin analogues and evaluation of the luminescent properties. Chem Eur J 22(27):9330–9337. https://doi.org/10.1002/chem.201600278

    Article  CAS  Google Scholar 

  35. Isobe H, Takano Y, Okumura M, Kuramitsu S, Yamaguchi K (2005) Mechanistic insights in charge-transfer-induced luminescence of 1,2-dioxetanones with a substituent of low oxidation potential. J Am Chem Soc 127(24):8667–8679. https://doi.org/10.1021/ja043295f

    Article  CAS  Google Scholar 

  36. Jacquemin D, Planchat A, Adamo C, Mennucci B (2012) 5TD-DFT assessment of functionals for optical 0–0 transitions in solvated dyes. J Chem Theory Comput 8(7):2359–2372. https://doi.org/10.1021/ct300326f, pMID: 26588969

  37. Jathoul AP, Grounds H, Anderson JC, Pule MA (2014) A dual-color far-red to near-infrared firefly luciferin analogue designed for multiparametric bioluminescence imaging. Angew Chem Int Ed 53(48):13059–13063. https://doi.org/10.1002/anie.201405955

    Article  CAS  Google Scholar 

  38. Kaskova ZM, Tsarkova AS, Yampolsky IV (2016) 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 45(21):6048–6077. https://doi.org/10.1039/c6cs00296j

    Article  CAS  Google Scholar 

  39. Kato D, Shirakawa D, Polz R, Maenaka M, Takeo M, Negoro S, Niwa K (2014) A firefly inspired one-pot chemiluminescence system using n-propylphosphonic anhydride (T3P). Photochem Photobiol Sci 13:1640–1645. https://doi.org/10.1039/C4PP00250D

    Article  CAS  Google Scholar 

  40. Kiani FA, Fischer S (2015) Advances in quantum simulations of ATPase catalysis in the myosin motor. Curr Opin Struct Biol 31:115 – 123. https://doi.org/10.1016/j.sbi.2015.04.006 (Theory and simulation/macromolecular machines and assemblies)

  41. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897. https://doi.org/10.1021/ar000033j, pMID: 11123888

  42. Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113(17):2019–2039. https://doi.org/10.1002/qua.24438

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  44. Liu F, Liu Y, De Vico L, Lindh R (2009) A CASSCF/CASPT2 approach to the decomposition of thiazole-substituted dioxetanone: substitution effects and charge-transfer induced electron excitation. Chem Phys Lett 484(1–3):69–75. https://doi.org/10.1016/j.cplett.2009.11.009

    Article  CAS  Google Scholar 

  45. Loco D, Polack É, Caprasecca S, Lagardère L, Lipparini F, Piquemal JP, Mennucci B (2016) A QM/MM approach using the AMOEBA polarizable embedding: from ground state energies to electronic excitations. J Chem Theory Comput 12(8):3654–3661. https://doi.org/10.1021/acs.jctc.6b00385

    Article  CAS  PubMed  Google Scholar 

  46. Manuel de Almeida Barbosa N, Zemmouche M, Gosset P, García-Iriepa C, Ledentu V, Navizet I, Didier P, Ferré N (2019) pH-dependent absorption spectrum of oxyluciferin analogues in the presence of adenosine monophosphate. ChemPhotoChem 3(12):1219–1230. https://doi.org/10.1002/cptc.201900150

  47. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. https://doi.org/10.1021/jp810292n, pMID: 19366259

  48. Mennucci B, Cances E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101(49):10506–10517. https://doi.org/10.1021/jp971959k

    Article  CAS  Google Scholar 

  49. Min CG, Ren AM, Guo JF, Li ZW, Zou LY, Goddard JD, Feng JK (2010) A time-dependent density functional theory investigation on the origin of red chemiluminescence. ChemPhysChem 11(1):251–259. https://doi.org/10.1002/cphc.200900607

    Article  CAS  PubMed  Google Scholar 

  50. Min CG, Ren AM, Li XN, Guo JF, Zou LY, Sun Y, Goddard JD, Sun CC (2011) The formation and decomposition of firefly dioxetanone. Chem Phys Lett 506(4):269–275. https://doi.org/10.1016/j.cplett.2011.01.064

    Article  CAS  Google Scholar 

  51. Min CG, Pinto da Silva L, Esteves da Silva JC, Yang XK, Huang SJ, Ren AM, Zhu YQ (2017) A computational investigation of the equilibrium constants for the fluorescent and chemiluminescent states of coelenteramide. ChemPhysChem 18(1):117–123. https://doi.org/10.1002/cphc.201600850

    Article  CAS  PubMed  Google Scholar 

  52. Mitschke U, Bauerle P (2000) The electroluminescence of organic materials. J Mater Chem 10:1471–1507. https://doi.org/10.1039/A908713C

    Article  CAS  Google Scholar 

  53. Mochizuki T, Wang Y, Hiyama M, Akiyama H (2014) Robust red-emission spectra and yields in firefly bioluminescence against temperature changes. Appl Phys Lett 104(21):213704. https://doi.org/10.1063/1.4880578

    Article  CAS  Google Scholar 

  54. Modestova Y, Ugarova NN (2016) Color-shifting mutations in the C-domain of L. mingrelica firefly luciferase provide new information about the domain alternation mechanism. Biochim Biophys Acta Proteins Proteomics 1864(12):1818–1826. https://doi.org/10.1016/j.bbapap.2016.09.007

  55. Monette Z, Kasar AK, Menezes PL (2019) Advances in triboluminescence and mechanoluminescence. J Mater Sci: Mater Electron 30(22):19675–19690. https://doi.org/10.1007/s10854-019-02369-8

    Article  CAS  Google Scholar 

  56. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  Google Scholar 

  57. Nakano H (1993) Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J Chem Phys 99(10):7983–7992. https://doi.org/10.1063/1.465674

    Article  CAS  Google Scholar 

  58. Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K, Kato H (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440(7082):372–376. https://doi.org/10.1038/nature04542

    Article  CAS  PubMed  Google Scholar 

  59. Navizet I, Liu YJ, Ferré N, Xiao HY, Fang WH, Lindh R (2010) Color-tuning mechanism of firefly investigated by multi-configurational perturbation method. J Am Chem Soc 132(2):706–712. https://doi.org/10.1021/ja908051h

    Article  CAS  PubMed  Google Scholar 

  60. Navizet I, Liu YJ, Ferré N, Roca-Sanjuán D, Lindh R (2011) The chemistry of bioluminescence: an analysis of chemical functionalities. ChemPhysChem 12(17):3064–3076. https://doi.org/10.1002/cphc.201100504

    Article  CAS  PubMed  Google Scholar 

  61. Navizet I, Roca-Sanjuán D, Yue L, Liu YJ, Ferré N, Lindh R (2013) Are the bio- and chemiluminescence states of the firefly oxyluciferin the same as the fluorescence state? Photochem Photobiol 89(2):319–325. https://doi.org/10.1111/php.12007

    Article  CAS  PubMed  Google Scholar 

  62. Ohmiya Y, Kojima S, Nakamura M, Niwa H (2005) Bioluminescence in the limpet-like snail. Latia neritoides. Bull Chem Soc Jpn 78(7):1197–1205. https://doi.org/10.1246/bcsj.78.1197

    Article  CAS  Google Scholar 

  63. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7(2):525–537. https://doi.org/10.1021/ct100578z

    Article  CAS  PubMed  Google Scholar 

  64. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676. https://doi.org/10.1002/jcc.20090

    Article  CAS  PubMed  Google Scholar 

  65. Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123(6):062201. https://doi.org/10.1063/1.1904565

    Article  CAS  Google Scholar 

  66. Piquemal JP, Gresh N, Giessner-Prettre C (2003) Improved formulas for the calculation of the electrostatic contribution to the intermolecular interaction energy from multipolar expansion of the electronic distribution. J Phys Chem A 107(48):10353–10359. https://doi.org/10.1021/jp035748t

    Article  CAS  PubMed  Google Scholar 

  67. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035. https://doi.org/10.1021/ja00051a040

    Article  CAS  Google Scholar 

  68. Roca-Sanjuán D, Delcey MG, Navizet I, Ferré N, Liu YJ, Lindh R (2011) Chemiluminescence and fluorescence states of a small model for coelenteramide and cypridina oxyluciferin: a CASSCF/CASPT2 study. J Chem Theory Comput 7(12):4060–4069. https://doi.org/10.1021/ct2004758

    Article  CAS  PubMed  Google Scholar 

  69. Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48(2):157–173. https://doi.org/10.1016/0301-0104(80)80045-0

    Article  CAS  Google Scholar 

  70. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2004) Main group atoms and dimers studied with a new relativistic ANO basis set. J Phys Chem A 108(15):2851–2858. https://doi.org/10.1021/jp031064+

    Article  CAS  Google Scholar 

  71. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2016) Multiconfigurational quantum chemistry. Wiley, Ltd. https://doi.org/10.1002/9781119126171

    Article  Google Scholar 

  72. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738. https://doi.org/10.1038/nprot.2010.5

    Article  CAS  PubMed  Google Scholar 

  73. Sharipov GL, Abdrakhmanov AM, Gareev BM (2019) Visualization of luminescence of two types in an acoustic field in a liquid. Tech Phys Lett 45(12):1175–1177. https://doi.org/10.1134/S1063785019120137

    Article  CAS  Google Scholar 

  74. Shimomura O (2006) Bioluminescence. World Scientific. https://doi.org/10.1142/6102

    Article  Google Scholar 

  75. Shimomura O, Johnson FH, Masugi T (1969) Cypridina bioluminescence: light-emitting oxyluciferin-luciferase complex. Science 164(3885):1299–1300. https://doi.org/10.1126/science.164.3885.1299

    Article  CAS  Google Scholar 

  76. Shiozaki T, Győrffy W, Celani P, Werner HJ (2011) Extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. J Chem Phys 135(8):081106. https://doi.org/10.1063/1.3633329

    Article  CAS  Google Scholar 

  77. da Silva LP, Esteves da Silva JC (2011) Computational studies of the luciferase light-emitting product: oxyluciferin. J Chem Theory Comput 7(4):809–817. https://doi.org/10.1021/ct200003u

    Article  CAS  Google Scholar 

  78. da Silva LP, Simkovitch R, Huppert D, Esteves da Silva JC (2013) Oxyluciferin photoacidity: the missing element for solving the keto-enol mystery? ChemPhysChem 14(15):3441–3446

    Article  Google Scholar 

  79. da Silva LP, da Silva JCE (2014) Quantum/molecular mechanics study of firefly bioluminescence on luciferase oxidative conformation. Chem Phys Lett 608:45–49. https://doi.org/10.1016/j.cplett.2014.05.061

    Article  CAS  Google Scholar 

  80. Stein CJ, Reiher M (2016) Automated selection of active orbital spaces. J Chem Theory Comput 12(4):1760–1771. https://doi.org/10.1021/acs.jctc.6b00156, pMID: 26959891

  81. Støchkel K, Hansen CN, Houmøller J, Nielsen LM, Anggara K, Linares M, Norman P, Nogueira F, Maltsev OV, Hintermann L, Nielsen SB, Naumov P, Milne BF (2013) On the influence of water on the electronic structure of firefly oxyluciferin anions from absorption spectroscopy of bare and monohydrated ions in vacuo. J Am Chem Soc 135(17):6485–6493. https://doi.org/10.1021/ja311400t

    Article  CAS  PubMed  Google Scholar 

  82. Stowe CL, Burley TA, Allan H, Vinci M, Kramer-Marek G, Ciobota DM, Parkinson GN, Southworth TL, Agliardi G, Hotblack A, Lythgoe MF, Branchini BR, Kalber TL, Anderson JC, Pule MA (2019) Near-infrared dual bioluminescence imaging in mouse models of cancer using infraluciferin. eLife 8:e45801. https://doi.org/10.7554/eLife.45801

  83. Sundlov JA, Fontaine DM, Southworth TL, Branchini BR, Gulick AM (2012) Crystal structure of firefly luciferase in a second catalytic conformation supports a domain alternation mechanism. Biochemistry 51(33):6493–6495. https://doi.org/10.1021/bi300934s

    Article  CAS  PubMed  Google Scholar 

  84. Tafreshi NK, Hosseinkhani S, Sadeghizadeh M, Sadeghi M, Ranjbar B, Naderi-Manesh H (2007) The influence of insertion of a critical residue (Arg\(^{356}\)) in structure and bioluminescence spectra of firefly luciferase. J Biol Chem 282(12):8641–8647. https://doi.org/10.1074/jbc.m609271200

  85. Tang K, Zhang J, Liang J (2014) Fast protein loop sampling and structure prediction using distance-guided sequential chain-growth Monte Carlo method. PLoS Comput Biol 10(4):e1003539. https://doi.org/10.1371/journal.pcbi.1003539

    Article  CAS  PubMed  Google Scholar 

  86. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401. https://doi.org/10.1103/physrevlett.91.146401

    Article  PubMed  Google Scholar 

  87. Ullrich CA, Yang Z (2014) A brief compendium of time-dependent density functional theory. Braz J Phys 44(1):154–188. https://doi.org/10.1007/s13538-013-0141-2

    Article  Google Scholar 

  88. Vacher M, Fdez Galván I, Ding BW, Schramm S, Berraud-Pache R, Naumov P, Ferré N, Liu YJ, Navizet I, Roca-Sanjuán D, Baader WJ, Lindh R (2018) Chemi- and bioluminescence of cyclic peroxides. Chem Rev 118(15):6927–6974. https://doi.org/10.1021/acs.chemrev.7b00649, pMID: 29493234

  89. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. https://doi.org/10.1002/jcc.21367

    Article  CAS  PubMed  Google Scholar 

  90. Vysotski ES, Markova SV, Frank LA (2006) Calcium-regulated photoproteins of marine coelenterates. Mol Biol 40(3):355–367. https://doi.org/10.1134/s0026893306030022

    Article  CAS  Google Scholar 

  91. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  92. Wang Y, Kubota H, Yamada N, Irie T, Akiyama H (2011) Quantum yields and quantitative spectra of firefly bioluminescence with various bivalent metal ions. Photochem Photobiol 87(4):846–852. https://doi.org/10.1111/j.1751-1097.2011.00931.x

    Article  CAS  PubMed  Google Scholar 

  93. Webb B, Sali A (2016) Comparative protein structure modeling using modeller. Curr Protoc Protein Sci 86(1):2.9.1–2.9.37. https://doi.org/10.1002/cpps.20

  94. White EH, Rapaport E, Hopkins TA, Seliger HH (1969) Chemi- and bioluminescence of firefly luciferin. J Am Chem Soc 91(8):2178–2180. https://doi.org/10.1021/ja01036a093

    Article  CAS  PubMed  Google Scholar 

  95. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14(1):197–230. https://doi.org/10.1146/annurev.cellbio.14.1.197, pMID: 9891783

  96. Woodroofe CC, Meisenheimer PL, Klaubert DH, Kovic Y, Rosenberg JC, Behney CE, Southworth TL, Branchini BR (2012) Novel heterocyclic analogues of firefly luciferin. Biochemistry 51(49):9807–9813. https://doi.org/10.1021/bi301411d, pMID: 23164087

  97. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  98. York DM, Karplus M (1999) A smooth solvation potential based on the conductor-like screening model. J Phys Chem A 103(50):11060–11079. https://doi.org/10.1021/jp992097l

    Article  CAS  Google Scholar 

  99. Yue L, Liu YJ, Fang WH (2012) Mechanistic insight into the chemiluminescent decomposition of firefly dioxetanone. J Am Chem Soc 134(28):11632–11639. https://doi.org/10.1021/ja302979t

    Article  CAS  PubMed  Google Scholar 

  100. Zemmouche M, García-Iriepa C, Navizet I (2020) Light emission colour modulation study of oxyluciferin synthetic analogues via QM and QM/MM approaches. Phys Chem Chem Phys 22:82–91. https://doi.org/10.1039/C9CP04687A

    Article  CAS  Google Scholar 

  101. Zhou JG, Yang S, Deng ZY (2017) Electrostatic catalysis induced by luciferases in the decomposition of the firefly dioxetanone and its analogue. J Phys Chem B 121(49):11053–11061. https://doi.org/10.1021/acs.jpcb.7b08000, pMID: 29168632

Download references

Acknowledgements

Isabelle Navizet acknowledges support from the ANR BIOLUM project (ANR-16-CE29-0013) for QM/MM studies on firefly systems. Isabelle Navizet acknowledges M. Zemmouche and M. Sahihi and the reviewers of this chapter for their advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Navizet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navizet, I. (2021). QM/MM Study of Bioluminescent Systems. In: Andruniów, T., Olivucci, M. (eds) QM/MM Studies of Light-responsive Biological Systems. Challenges and Advances in Computational Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-57721-6_5

Download citation

Publish with us

Policies and ethics