Skip to main content

Factors Contributing to Volcano Lateral Collapse

  • Chapter
  • First Online:
Volcanic Debris Avalanches

Abstract

Many factors can lead to volcano lateral collapse, which can produce devastating debris avalanches that travel up to several tens to over 100 km and cover hundreds to more than a thousand km2 with debris. Volcanic lateral collapses are severe hazards because of their destructive power and size, and sudden onset. Although their frequency of occurrence is not as high as those of smaller volcanic mass movements, such as rock falls and lahars, globally large collapses ≥0.1 km3 have occurred at least five times per century over the last 500 years. A large variety of destabilizing factors such as over-steepened slopes, magma intrusions, hydrothermal activity, climate fluctuations, deformation of the basement, and faulting can create the conditions for volcano collapse. Once a volcano reaches its critical point, a mechanism is necessary to trigger the failure event. We present the state-of-the-art of the knowledge acquired in the last few decades concerning the causes of large-scale volcanic failures to better understand the triggers, preparatory factors, and timing of volcano lateral collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alloway B, McComb P, Neall V, Vucetich C, Gibb J, Sherburn S, Stirling M (2005) Stratigraphy, age, and correlation of voluminous debris-avalanche events from an ancestral Egmont Volcano: implications for coastal plain construction and regional hazard assessment. J Roy Soc New Zealand 35(1–2):229–267

    Article  Google Scholar 

  • Alvarado GE, Veg E, Chaves J, Vasquez M (2004) Los grandes deslizamientos (volcánicos y no-volcánicos) de tipo debris avalanche en Costa Rica. Rev Geo De Am Centr 30:83–99

    Google Scholar 

  • Andrade SD, van Wyk de Vries B (2010) Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models. Bull Vulcanol 72:771–789

    Google Scholar 

  • Apuani T, Corazzato C, Merri A, Tibaldi A (2013) Understanding Etna flank instability through numerical models. J Vol Geotherm Res 251:112–126

    Article  Google Scholar 

  • Bachèlery P, Robineau B, Courteaud M, Savin C (2003) Debris avalanches on the western flank of Piton des Neiges shield volcano (Reunion Island). Bull Soc Géo De France 174(2):125–140

    Article  Google Scholar 

  • Bahar I, Girod M (1983) Controle Structural Du Volcanisme Indonésie (Sumatra, Java-Bali); Application et Critique de La Methode de Nakamura. Bull Soc Géo De France XXV 7:609–614

    Article  Google Scholar 

  • Begét JE, Kienle J (1992) Cyclic formation of debris avalanches at Mt. St. Augustine volcano Alaska. Nature 356:701–704

    Article  Google Scholar 

  • Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61(5):324–342

    Article  Google Scholar 

  • Belousov A, Voight B, Belousova M (2004) Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits. Bull Volcanol 69:701–740

    Article  Google Scholar 

  • Bennett MR, Glasser NF (2009) Glacial geology. Ice sheets and landforms. Wiley-Blackwell, p 385

    Google Scholar 

  • Blahůt J, Klimeš J, Rowberry M, Kusák M (2018) Database of giant landslides on volcanic islands—first results from the Atlantic Ocean. Landslides 15(4):823–827

    Article  Google Scholar 

  • Bogoyavlenskaya GE, Kirsanov IT (1981) Twenty-five years of activity of Bezymianny Volcano Vulkanologiya i Seismologiya, vol 2, pp 3–13

    Google Scholar 

  • Boldini D, Wang F, Sassa K, Tommasi P (2009) Application of large-scale ring shear tests to the analysis of tsunamigenic landslides at the Stromboli volcano, Italy. Landslides 6(3):231–240

    Article  Google Scholar 

  • Bonaccorso A, Calvari S, Garfì G, Lodato L, Patanè D (2003) Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geo Res Letters 30(18):1941

    Google Scholar 

  • Bonforte A, Guglielmino F, Coltelli M, Ferretti A, Puglisi G (2011) Structural assessment of Mount Etna volcano from Permanent Scatterers analysis. Geoch Geophy Geosys 12(2):Q02002

    Google Scholar 

  • Bonforte A, Guglielmino F, Puglisi G (2019) Large dyke intrusion and small eruption: the December 24, 2018 Mt. Etna eruption imaged by Sentinel‐1 data. Terra Nova 31(4):405–412

    Google Scholar 

  • Borgia A, Ferrari L, Pasquarè G (1992) Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357:231–235

    Article  Google Scholar 

  • Borgia A, Delaney PT, Denlinger RP (2002) Spreading Volcanoes. Annu Rev Earth Planet Sci 2000 28:539–70

    Google Scholar 

  • Borselli L, Capra L, Sarocchi D, De la Cruz-Reyna S (2011) Flank collapse scenario at Volcan de Colima, Mexico: a relative instability analysis. J Vol Geotherm Res 208:51–65

    Article  Google Scholar 

  • Boudon G, Villemant B, Le Friant A, Paterne M, Cortijo E (2013) Role of large flank-collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc. J Vol Geotherm Res 263:224–237

    Article  Google Scholar 

  • Capra (2006) Abrupt climatic changes as triggering mechanism of massive volcanic collapses. J Vol Geotherm Res 155:329–333

    Article  Google Scholar 

  • Capra L, Macias JL, Scott KM, Abrams M, Garduño-Monroy VH (2002) Debris avalanche and debris flow transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico-behavior, and implication for hazard assessment. J Vol Geotherm Res 113:81–110

    Article  Google Scholar 

  • Capra L, Bernal JP, Carrasco-Nuñez G, Roverato M (2013) Climatic fluctuations as a significant contributing factor for volcanic collapses. Evidence from Mexico during the Late Pleistocene. Glob Plan Change 100:194–203

    Article  Google Scholar 

  • Capra L, Roverato M, Groppelli G, Caballero L, Sulpizio R, Norini G (2015) Glacier melting during lava dome growth at Nevado de Toluca volcano (Mexico): evidences of a major threat before main eruptive phases at ice-caped volcanoes. J Vol Geotherm Res 294:1–10

    Article  Google Scholar 

  • Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large Oceanic-Island Volcanoes. J Vol Geotherm Res 60:225–241

    Article  Google Scholar 

  • Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Vol Geotherm Res 94(1–4):1–19

    Article  Google Scholar 

  • Carrasco-Núñez G, Vallance JW, Rose WI (1993) A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 59(1–2):35–46

    Article  Google Scholar 

  • Carrasco-Núñez G, Díaz-Castellón R, Siebert L, Hubbard R, Sheridan MF, Rodríguez SR (2006) Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: the role of sloping substrate and implications for hazard assessment. J Volcanol Geotherm Res 158:151–176

    Article  Google Scholar 

  • Cecchi E, van Wyk de Vries B, Lavest JM (2004) Flank spreading and collapse of weak-cored volcanoes. Bull Volcanol 67(1):72–91

    Google Scholar 

  • Cervelli P, Segall P, Johnson K, Lisowski M, Miklius A (2002) Sudden aseismic fault slip on the south flank of Kilauea volcano. Nature 415(6875):1014

    Article  Google Scholar 

  • Chen K, Smith JD, Avouac JP, Liu Z, Song YT, Gualandi A (2019) Triggering of the Mw 7.2 Hawaii earthquake of May 4, 2018 by a dike intrusion. Geoph Res Lett 46(5):2503–2510

    Google Scholar 

  • Chiocci FL, Romagnoli C, Tommasi P, Bosman A (2008) The Stromboli 2002 tsunamigenic submarine slide: characteristics and possible failure mechanisms. J Geophys Res S Earth 113(B10):B10102

    Article  Google Scholar 

  • Christiansen RL, Peterson DW, Lipman PW, Mullineaux DR (1981) Chronology of the 1980 eruptive activity. US Geol Surv Prof Pap 1250:17–30

    Google Scholar 

  • Clapperton CM (1998) Late Quaternary glacier fluctuations in the Andes: testing the synchrony of global change. In: Owen LA (ed) Mountain Glaciation. Quaternary proceedings, vol 6. Wiley, Chichester, pp 65–73

    Google Scholar 

  • Clavero JE, Sparks RSJ, Huppert HE (2002) Geological constraints on the emplacement mechanism of the Parinacota avalanche, northern Chile. Bull Volcanol 64:40–54

    Article  Google Scholar 

  • Coe JA, Bessette-Kirton EK, Geertsema M (2018) Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery. Landslides 15:393

    Article  Google Scholar 

  • Cooke RJ (1981) Eruptive history of the volcano at Ritter Island. Geol Surv Papua New Guinea Mem 10:115–123

    Google Scholar 

  • Coombs ML, White SM, Scholl DW (2007) Massive edifice failure at Aleutian arc volcanoes. Earth and Plan Scie Lett 256(3–4):403–418

    Article  Google Scholar 

  • Crandell DR, Hoblitt RP (2006) Lateral blasts at Mount St. Helens and hazard zonation. Bull Volcanol 48:27–37

    Google Scholar 

  • Day SJ (1996) Hydrothermal pore fluid pressure and the stability of porous, permeable volcanoes. In: McGuire WJ, Neuberg J, Jones A (eds) Volcano instability on the Earth and terrestrial planets. Geol Soc London Spec Publ 110:77–93

    Google Scholar 

  • Day SJ, Watts P, Grilli ST, Kirby JT (2005) Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Mar Geol 215(1–2):59–92

    Article  Google Scholar 

  • Day SJ, Llanes P, Silver E, Hoffmann G, Ward S, Driscoll N (2015) Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea. Mar Pet Geol 67:419–438

    Article  Google Scholar 

  • Delaney PT, Pollard DD, Ziony JI, McKee EH (1986) Field Relations between dikes and joints: Emplacement processes and paleostress analysis. J Geophys Res 91(B5):4920

    Article  Google Scholar 

  • Delcamp A, van Wyk de Vries B, James MR (2008) The influence of the edifice slope and substrata on volcano spreading. J Vol Geotherm Res 177:925–943

    Google Scholar 

  • Delmelle P, Bernard A (2015) The remarkable chemistry of sulfur in hyper-acid crater lakes: a scientific tribute to Bokuichiro Takano and Minoru Kusakabe. In: Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Volcanic Lakes, Advances in Volcanology. Springer, Berlin

    Google Scholar 

  • del Potro R, Hürlimann M, Pinkerton H (2013) Modelling flank instabilities on stratovolcanoes: parameter sensitivity and stability analyses of Teide, Tenerife. J Vol Geotherm Res 256:50–60

    Article  Google Scholar 

  • della Pasqua F, Massey CI, McSaveney M, Townsend D (2016) Preliminary assessment of some flank-failure scenarios for Mount Taranaki and recommendations for future assessment of the risk from such hazards. GNS Science Report 2015/54:48

    Google Scholar 

  • Deplus C, Le Friant A, Boudon G, Komorowski JC, Villemant B, Harford C, Cheminée JL (2001) Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc. Earth and Plan Sci Lett 192(2):145–157

    Article  Google Scholar 

  • Deutschle OK (2013) Characterisation of geotechnical units on Mount Taranaki and influence on edifice stability. Masters dissertation, University of Auckland

    Google Scholar 

  • Di Traglia F, Nolesini T, Ciampalini A, Solari L, Frodella W, Bellotti F, Fumagalli A, De Rosa G, Casagli, N (2018) Tracking morphological changes and slope instability using spaceborne and ground-based SAR data. Geomorphology 300:95–112

    Google Scholar 

  • Donnadieu F, Merle O (1998) Experiments on the identation process during cryptodome intrusions: New insights into Mount St. helens deformation. Geology 26:79–82

    Article  Google Scholar 

  • Donnadieu F, Merle O, Besson JC (2001) Volcanic edifice stability during cryptodome intrusion. Bull Volcanol 63:61–72

    Article  Google Scholar 

  • Dufresne A, Siebert L, Bernard B (2020) Distribution and geometric parameters of volcanic debris avalanche deposits. In: Roverato M, Dufresne A, Procter J (eds) Volcanic Dedris Avalanches: from collapse to hazard, advances in volcanology. Springer, Berlin

    Google Scholar 

  • Dzurisin D (2018) Mount St. Helens retrospective: Lessons learned since 1980 and remaining challenges. Front in Earth Sci 6:142

    Google Scholar 

  • Endo ET, Malone SD, Noson LL, Weaver CS (1981) Locations, magnitudes, and statistics of the March 20–May 18 earthquake sequence. In: The 1980 eruptions of Mount St. Helens, Washington (1250: 93–107). US Department of the Interior

    Google Scholar 

  • Endo K, Sumita M, Machida M, Furuichi M (1989) The 1984 collapse and debris avalanche deposits of Ontake Volcano, central Japan. In: Volcanic hazards. Springer, Berlin, pp 210–229

    Google Scholar 

  • Elsworth D, Day SJ (1999) Flank collapse triggered by intrusion: the Canarian and Cape Verde Archipelagoes. J Vol Geotherm Res 94(1–4):323–340

    Article  Google Scholar 

  • Elseworth D, Voight B (1995) Dike intrusion as a trigger for large earthquakes and the failure of volcano flanks. J Geo Phys Res 100(B4):6005–6024

    Article  Google Scholar 

  • Elsworth D, Voight B (1996) Evaluation of volcano flank instability triggered by dyke intrusion. Geol Soc London Spec Publ 110(1):45–53

    Article  Google Scholar 

  • Fairchild LH (1987) The importance of lahar initiation processes. Debris flows/avalanches: process, recognition, and mitigation. Geo S of Am Rev in Eng Geo 7:51–61

    Article  Google Scholar 

  • Francis PW (1994) Large volcanic debris avalanches in the central Andes. In: Proceedings of international conference on volcano instability on the Earth and other planets. Geol Soc London

    Google Scholar 

  • Francis PW, Self S (1987) Collapsing volcanoes. Sci Am 256(6):90–99

    Article  Google Scholar 

  • Francis PW, Wells GL (1988) Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes. Bull Volcanol 50:258–278

    Article  Google Scholar 

  • Frank D (1995) Surficial extent and conceptual model of hydrothermal system at Mount Rainier, Washington. J Vol Geotherm Res 65:51–80

    Article  Google Scholar 

  • Frantz JD, Popp RK, Boctor NZ (1981) Mineral-solution equilibria—V. Solubilities of rock forming minerals in supercritical water. Geoch Cosm Acta 45:69–77

    Article  Google Scholar 

  • Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington (No. 96–677). US Geological Survey Open File Report

    Google Scholar 

  • González PJ, Tiampo KF, Camacho AG, Fernández J (2010) Shallow flank deformation at Cumbre Vieja volcano (Canary Islands): Implications on the stability of steep-sided volcano flanks at oceanic islands. Earth Plan Sci Lett 297(3–4):545–557

    Article  Google Scholar 

  • Gorshkov GS (1959) Gigantic eruption of the volcano Bezymianny. Bull Volcanol 21:77–109

    Article  Google Scholar 

  • Gorshkov GS, Bogoyavlenskaya GE (1965) Bezymianny volcano and peculiarities of its last eruption (1955–1963). Nauka (in Russian), Moscow

    Google Scholar 

  • Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017) Beyond debuttressing: mechanics of paraglacial rock slope damage during repeat glacial cycles. J Geophys Res Earth Surf 122(4):1004–1036

    Article  Google Scholar 

  • Hibert C, Michéa D, Provost F, Malet JP, Geertsema M (2019) Exploration of continuous seismic recordings with a machine learning approach to document 20 years of landslide activity in Alaska. Geophys J Intern 219:1138–1147

    Article  Google Scholar 

  • Hildenbrand A, Marques FO, Catalão J, Catita CMS, Costa ACG (2012) Large-scale active slump of the southeastern flank of Pico Island. Azores Geol 40(10):939–942

    Article  Google Scholar 

  • Hildenbrand A, Marques FO, Catalão J (2018) Large-scale mass wasting on small volcanic islands revealed by the study of Flores Island (Azores). Sci Rep 8(1):13898

    Article  Google Scholar 

  • Hoshizumi H, Uto K, Watanabe K (1999) Geology and eruptive history of Unzen volcano, Shimabara peninsula, Kyushu. SW Japan. J Vol Geotherm Res 89(1–4):81–94

    Article  Google Scholar 

  • Huggel C, Caplan-Auerbach J, Waythomas CF, Wessels RL (2007) Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: a case study of frequent large avalanches on Iliamna Volcano, Alaska. J Vol Geotherm Res 168:114–136

    Article  Google Scholar 

  • Huggel C, Caplan-Auerbach J, Wessels R (2008) Recent extreme avalanches: triggered by climate change? Eos 89(47):469–470

    Article  Google Scholar 

  • Hürlimann M, Ledesma A, Martí J (1999) Conditions favouring catastrophic landslides on Tenerife (Canary Islands). Terra Nova 11(2–3):106–111

    Article  Google Scholar 

  • Inoue K (2000) Shimabara-Shigatusaku Earthquake and topographic changes by Shimabara Catastrophe in 1792

    Google Scholar 

  • Inokuchi (1988) Gigantic landslides and debris avalanches on volcanoes in Japan: case studies on Bandai, Chokai and Iwate Volcanoes. Rep Nat Res Center Disaster Prevent 41:163–275 ((in Japanese with English abstract))

    Google Scholar 

  • Iverson RM (1995) Can magma-injection and groundwater forces cause massive landslides on Hawaiian volcanoes? J Vol Geotherm Res 66(1–4):295–308

    Article  Google Scholar 

  • John DA, Sisson TW, Breit GN, Rye RO, Vallance JW (2008) Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits. J Vol Geotherm Res 175:289–314

    Article  Google Scholar 

  • Johnson RW (1987) Large-scale volcanic cone collapse: the 1888 slope failure of Ritter volcano, and other examples from Papua New Guinea. Bull 49(5):669–679

    Google Scholar 

  • Karstens J, Berndt C, Urlaub M, Watt SF, Micallef A, Ray M, Klaucke I, Muff S, Klaeschen D, Kühn M, Roth T, Böttner C, Schramm B, Elger J, Brune S (2019) From gradual spreading to catastrophic collapse–Reconstruction of the 1888 Ritter Island volcanic sector collapse from high-resolution 3D seismic data. Earth Plan S Lett 517:1–13

    Article  Google Scholar 

  • Kataoka KS, Matsumoto T, Saito T, Kawashima K, Nagahashi Y, Iyobe T, Suzuki K (2018) Lahar characteristics as a function of triggering mechanism at a seasonally snow-clad volcano: contrasting lahars following the 2014 phreatic eruption of Ontake Volcano, Japan. Earth Planets Space 70(1):113

    Article  Google Scholar 

  • Katsui Y, Komuro H, Uda T (1985) Development of faults and growth of Usu-Shinzan cryptodome in 1977–1982 at Usu volcano, north Japan. J Fac Sci Hokkaido Univ Ser IV 21:339–362

    Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. G S A Bull 95(4):406–421

    Article  Google Scholar 

  • Kerle N, van Wyk de Vries B (2001) The 1998 debris avalanche at Casita volcano, Nicaragua—investigation of structural deformation as the cause of slope instability using remote sensing. J Vol Geotherm Res 105(1–2):49–63

    Google Scholar 

  • Kokelaar P, Romagnoli C (1995) Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: Stromboli, Italy. Bull Volcan 57(4):240–262

    Article  Google Scholar 

  • Kos A, Amann F, Strozzi T, Delaloye R, von Ruette J, Springman S (2016) Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland. Geophys Res Lett 43(24):12466–12474

    Article  Google Scholar 

  • Kuhn D (2002) Fold and thrust belt structures and strike-slip faulting at the SE margin of the Salar de Atacama basin, Chilean Andes. Tectonics 21:1026

    Article  Google Scholar 

  • Lagmay AMF, Valdivia W (2006) Regional stress influence on the opening direction of crater amphitheaters in Southeast Asian volcanoes. J Vol Geotherm Res 158(1–2):139–150

    Article  Google Scholar 

  • Lagmay AMF, van Wyk de Vries B, Kerle N, Pyle DM (2000) Volcano instability induced by strike-slip faulting. Bull Volc 62 (4–5): 331–346

    Google Scholar 

  • Lebas E, Le Friant A, Boudon G, Watt SFL, Talling PJ, Feuillet N, Deplus C, Berndt C, Vardy ME (2011) Multiple widespread landslides during the long-term evolution of a volcanic island: Insights from high-resolution seismic data, Montserrat, Lesser Antilles. Geoch, Geophys Geosyst 12(5):Q05006

    Google Scholar 

  • Lebas E, Le Friant A, Deplus C, de Voogd B (2018) Understanding the evolution of an oceanic intraplate volcano from seismic reflection data: a new model for La Réunion, Indian Ocean. J Geophys Res Solid Earth 123(2):1035–1059

    Article  Google Scholar 

  • Le Friant A, Lebas E, Clément V, Boudon G, Deplus C, De Voogd B, Bachèlery P (2011) A new model for the evolution of La Réunion volcanic complex from complete marine geophysical surveys. Geophys Res Lett 38(9):L09312

    Article  Google Scholar 

  • Lénat JF, Bachèlery P, Bonneville A, Galdéano A, Labazuy P, Rousset D, Vincent P (1990) Structure and morphology of the submarine flank of an active basaltic volcano: Piton de la Fournaise (Réunion Island, Indian Ocean). Oceanol Acta 10:211–223

    Google Scholar 

  • Leyrit H (2000) Flank collapse and debris avalanche deposits. In: Leyrit H, Montenat C (eds) Volcaniclastic rocks, from magmas to sediments, pp 111–129

    Google Scholar 

  • Lipman PW, Mullineaux DR (eds) (1981) The 1980 eruptions of Mount St Helens, Washington. U.S. Geological Survey, Professional Paper 1250, 844 pp

    Google Scholar 

  • Lipman PW, Moore JG, Swanson DA (1981) Bulging of the north flank before the May 18 eruption-Geodetic data. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens. Washington: U.S. Geological Survey Professional Paper 1250–143–155

    Google Scholar 

  • Lopez DL, Williams SN (1993) Catastrophic volcanic collapse: relation to hydrothermal processes. Science 260:1794–1795

    Article  Google Scholar 

  • Lundgren P, Casu F, Manzo M, Pepe A, Berardino P, Sansosti E, Lanari R (2004) Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry. Geophys Res Lett 31(4)

    Google Scholar 

  • Macias JL, Arce JL, Garcia-Palomo A, Mora JC, Layer PW, Espindola JM (2010) Late-Pleistocene flank collapse triggered by dome growth at Tacaná volcano, México-Guatemala, and its relationship to the regional stress regime. Bull Volcanol 72:33–53

    Article  Google Scholar 

  • MacLeod N (1989) Sector-failure eruptions in Indonesian volcanoes. Geol Indonesia 12:563–601

    Google Scholar 

  • McClelland E, Erwin PS (2003) Was a dacite dome implicated in the 9,500 B.P. collapse of Mt Ruapehu? A Palaeomagnetic Investigation. Bull Volc 65:294–305

    Article  Google Scholar 

  • McGuire WJ (1996) Volcano instability: a review of contemporary themes. Geo Soc London Spec Publ 110(1):1–23

    Article  Google Scholar 

  • McGuire WJ (2003) Volcano instability and lateral collapse. Revista 1:33–45

    Google Scholar 

  • McGuire WJ (2006) Lateral collapse and tsunamigenic potential of marine volcanoes. In: Troise C, De Natale G, Kilburn CRJ (eds) Mechanisms of activity and unrest at large Calderas. Geo Soc London Spec Publ 269:121–140

    Google Scholar 

  • Mead S, Bebbington M, Procter J (2018) Emulation of the relationship between hazard intensity and volcanic processes. In: EGU General Assembly Conference Abstracts, vol 20, p 11000

    Google Scholar 

  • Merle O, Borgia A (1996) Scaled experiments of volcanic spreading. J Geophys Res Solid Earth 101(B6):13805–13817

    Article  Google Scholar 

  • Merle O, Lenat JF (2003) Hybrid collapse mechanism at Piton de la Fournaise volcano, Reunion Island. Indian Ocean J Geophysic Res 108(B3):2166

    Google Scholar 

  • Minakami T, Ishikawa T, Yagi K (1951) The 1944 eruption of volcano Usu in Hokkaido, Japan. Bull Volcanol 11:45–157

    Article  Google Scholar 

  • Miyamoto K (2010) Numerical simulation of landslide movement and Unzen-Mayuyama disaster in 1792. Japan J Disast Res 5(3):280–287

    Article  Google Scholar 

  • Montanaro C, Beget J, Marti J, Siebert L, Coombs M (2011) Volcano collapse along the Aleutian Ridge (western Aleutian Arc). Nat Haz Earth Sys Sci 11(3)

    Google Scholar 

  • Moon V, Bradshaw J, Smith R, de Lange W (2005) Geotechnical characterisation of stratocone crater wall sequences, White Island Volcano,New Zealand. Eng Geol 81(2):146–178

    Google Scholar 

  • Moore JG, Fiske RS (1969) Volcanic substructure inferred from dredge samples and ocean-bottom photographs, Hawaii. G S A Bull 80(7):1191–1202

    Article  Google Scholar 

  • Morgan JK, Moore GF, Clague DA (2003) Slope failure and volcanic spreading along the submarine south flank of Kilauea volcano, Hawaii. J Geophys Res Solid Earth 108(B9)

    Google Scholar 

  • Moriya I (1980) Bandaian eruption and landforms associated with it: collection of articles in memory of retirement of Prof. K. Hishimura, vol 66. Tohoku University

    Google Scholar 

  • Murray JB, van Wyk de Vries B, Pitty A, Sargent P, Woller L (2018) Gravitational sliding of the Mt. Etna massif along a sloping basement. Bull Volc 80:40

    Google Scholar 

  • Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation—principle and proposal. J Vol Geotherm Res 2:1–16

    Article  Google Scholar 

  • Norini G, Agliardi F, Crosta G, Groppelli G, Zuluaga MC (2019) Structure of the colima volcanic complex: origin and behaviour of active fault systems in the edifice. In: Varley N, Connor CB, Komorowski JC (eds) Volcanic de Colima, Active Volcanoes of the World. Springer, Berlin

    Google Scholar 

  • Norini G, Capra L, Groppelli G, Agliardi F, Pola A, Cortes A (2010) The structural architecture of the Colima Volcanic Complex. J Geophys Res Solid Earth 115:B12209

    Article  Google Scholar 

  • Norini G, Acocella V (2011) Analogue modelling of flank instability at Mount Etna: understanding the driving factors. J Geophys Res Solid Earth 116:B07206

    Article  Google Scholar 

  • Norini G, Capra L, Groppelli G, Lagmay AMF (2008) Quaternary sector collapses of Nevado de Toluca volcano (Mexico) as consequence of regional tectonics and volcanic evolution. Geosphere 4(5):854–871

    Article  Google Scholar 

  • Norini G, Lagmay AMF (2005) Deformed symmetrical volcanoes. Geology 33–7:605–608

    Article  Google Scholar 

  • Norini G, De Beni E, Andronico D, Polacci M, Burton M, Zucca F (2009) The 16 November 2006 flank collapse of the south-east crater at Mount Etna, Italy: study of the deposit and hazard assessment. J Geophys Res Solid Earth 114:B02204

    Google Scholar 

  • Norini G, Bustos E, Arnosio M, Baez W, Zuluaga MC, Roverato M (2020) Unusual volcanic instability and sector collapse configuration at Chimpa volcano, central Andes. J Volc Geoth Res 393:106808

    Article  Google Scholar 

  • Normark WR, Moore JG, Torresan ME (1993) Giant volcano-related landslides and the development of the Hawaiian Islands. Submarine landslides: selected studies in the US Exclusive economic zone. US Geol Surv Bull 2002:184–196

    Google Scholar 

  • Okubo CH (2004) Rock mass strength and slope stability of the Hilina slump, Kīlauea volcano, Hawai’i. J Volc Geoth Res 138(1–2):43–76

    Article  Google Scholar 

  • Paguican EM, Wyk de Vries B, Lagmay AMF (2012) Volcano-tectonic controls and emplacement kinematics of the Iriga debris avalanches (Philippines). Bull Volc 74(9):2067–2081

    Article  Google Scholar 

  • Poland MP, Peltier A, Bonforte A, Puglisi G (2018) The spectrum of persistent volcanic flank instability: a review and proposed framework based on Kīlauea, Piton de la Fournaise, and Etna. J Volc Geoth Res 339:63–80

    Article  Google Scholar 

  • Quidelleur X, Hildenbrand A, Samper A (2008) Causal link between quaternary paleoclimatic changes and volcanic islands evolution. Geophys Res Lett 35(2):L02303

    Article  Google Scholar 

  • Ramalho RS, Winckler G, Madeira J, Helffrich GR, Hipólito A, Quartau R, Adena K, Schaefer JM (2015) Hazard potential of volcanic flank collpases raised by new megatsunami evidence. Sci Adv 1:e1500456

    Article  Google Scholar 

  • Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32(5):373–376

    Article  Google Scholar 

  • Reid ME, Keith TE, Kayen RE, Iverson NR, Iverson RM, Brien DL (2010) Volcano collapse promoted by progressive strength reduction: new data from Mount St. Helens. Bull Volc 72(6):761–766

    Article  Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29(9):779–782

    Article  Google Scholar 

  • Rincon M, Marquez A, Herrera R, Alonso-Torres A, Granja-Bruña JL, van Wyk de Vries B (2018) Contrasting catastrophic eruptions predicted by different intrusion and collapse scenarios. Sci Rep 8:6178

    Google Scholar 

  • Roberti G, Ward B, van Wyk de Vries B, Friele P, Perotti L, Clague JJ, Giardino M (2017) Precursory slope distress prior to the 2010 Mount Meager landslide, British Columbia. Landslides 15:637

    Google Scholar 

  • Roberti G, Roberts NJ, Lit C (2020) Climatic influence on volcanic landslides. In: Roverato M, Dufresne A, Procter J (eds) Volcanic dedris avalanches: from collapse to hazard. Advances in volcanology. Springer, Berlin

    Google Scholar 

  • Rosas-Carbajal M, Komorowski JC, Nicollin F, Gibert D (2016) Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics. Sci Rep 6:29899

    Article  Google Scholar 

  • Roverato M, Capra L (2013) Características microtexturales como indicadores del transporte y emplazamiento de dos depósitos de avalancha de escombros del volcán de Colima. Rev Mex Ciencias Geol 30:512–525

    Google Scholar 

  • Roverato M, Cronin S, Procter J, Capra L (2015) Textural features as indicators of debris avalanche transport and emplacement. Taranaki Volcano GSA Bull 127:3–18

    Article  Google Scholar 

  • Roverato M, Capra L, Sulpizio R, Norini G (2011) Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): insights into pre-failure conditions and climate influence. J Volcan Geoth Res 207:33–46

    Article  Google Scholar 

  • Samaniego P, Valderrama P, Mariño J, van Wyk de Vries B, Roche O, Manrique N, Chédeville C, Liorzou, C, Fidel L, Malnati J (2015) The historical (218 ± 14 aBP) explosive eruption of Tutupaca volcano (Southern Peru). Bull Volcanol 77:51

    Google Scholar 

  • Sano Y, Nishio Y, Sasaki S, Gamo T, Nagao K (1998) Helium and carbon isotope systematics at Ontake volcano, Japan. J Geophys Res Solid Earth 103(B10):23863–23873

    Article  Google Scholar 

  • Sassa K, Dang K, He B, Takara K, Inoue K, Nagai O (2014) A new high-stress undrained ring-shear apparatus and its application to the 1792 Unzen–Mayuyama megaslide in Japan. Landslides 11(5):827–842

    Article  Google Scholar 

  • Schaefer LN, Di Traglia F, Chaussard E, Lu Z, Nolesini T, Casagli N (2019) Monitoring volcano slope instability with synthetic aperture radar: a review and new data from Pacaya (Guatemala) and Stromboli (Italy) volcanoes. Earth Scie Rev 192:236–257

    Article  Google Scholar 

  • Scott KM, Vallance JW, Pringle PT (1995) Sedimentology, behavior and hazards of debris flows at Mount Rainier, Washington. U.S. Geol Surv Prof Pap 1547:56

    Google Scholar 

  • Scott KM, Vallance JW, Kerle N, Macías JL, Strauch W, Devoli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Proc Landforms 30:59–79

    Article  Google Scholar 

  • Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4:657–686

    Google Scholar 

  • Shea T, van Wyk de Vries B (2010) Collapsing volcanoes: the sleeping giants’ threat. Geol Today 26(2):72–77

    Google Scholar 

  • Shea T, van Wyk de Vries B, Pilato M (2008) Emplacement mechanisms of contrasting debris avalanches at Volcán Mombacho (Nicaragua), provided by structural and facies analysis. Bull Volc 70:899-921

    Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: Characteristics of source areas, deposits, and associated eruptions. J Volcan Geoth Res 22:163–197

    Article  Google Scholar 

  • Siebert L, Roverato M (2020) A historical perspective on lateral collapse and debris avalanches. In: Roverato M, Dufresne A, Procter J (eds). Volcanic dedris avalanches: from collapse to hazard. Advances in volcanology. Springer, Berlin

    Google Scholar 

  • Siebert L, Alvarado GE, Vallance JW, van Wyk de Vries B (2006) Large-volume volcanic edifice failures in Central America and associated hazards. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic hazards in Central America. Geol Soc Am Spec Pap 412:1–26

    Google Scholar 

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny-and Bandai-type eruptions. Bull Volcan 49(1):435–459

    Article  Google Scholar 

  • Smith JR, Malahoff A, Shor AN (1999) Submarine geology of the Hilina slump and morpho-structural evolution of Kilauea volcano, Hawaii. J Volcanol Geotherm Res 94(1–4):59–88

    Article  Google Scholar 

  • Thomas ME, Petford N, Bromhead EN (2004) The effect of internal gas pressurization on volcanic edifice stability: evolution towards a critical state. Terra Nova 16:312–317

    Article  Google Scholar 

  • Tibaldi A (1995) Morphology of pyroclastic cones and tectonics. J Geophys Res 100(B12):24521–24535

    Article  Google Scholar 

  • Tibaldi A (1996) Mutual influence of dyking and collapses at Stromboli Volcano, Italy. Geol Soc London Spec Publ 110:55–63

    Article  Google Scholar 

  • Tibaldi A (2001) Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull Volcan 63(2–3):112–125

    Article  Google Scholar 

  • Tibaldi A, Lagmay AMF, Ponomareva VV (2005) Articles effects of basement structural and stratigraphic heritages on volcano behaviour and implications for human activities (the UNESCO/IUGS / IGCP Project 455). Episodes 28(3):158–170

    Article  Google Scholar 

  • Tinti S, Pagnoni G, Zaniboni F (2006) The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations. Bull Volcanol 68:462–479

    Article  Google Scholar 

  • Tommasi P, Baldi P, Chiocci FL, Coltelli M, Marsella M, Pompilio M, Romagnoli C (2005) The landslide sequence induced by the 2002 eruption at Stromboli volcano. In: Landslides: risk analysis and sustainable disaster management. Springer, Berlin, pp 251–258

    Google Scholar 

  • Tormey D (2010) Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa volcano. Southern Andes Glob Plan Ch 74(2):82–90

    Article  Google Scholar 

  • Tuffen H (2010) How will melting of ice affect volcanic hazards in the twenty-first century? Phil Trans R Soc a 368:2535–2558

    Article  Google Scholar 

  • Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with nonvolcanic debris stream deposits. J Volcan Geoth Res 18(1–4):135–150

    Article  Google Scholar 

  • Ui T, Yamamoto H, Suzuki-Kamata K (1986) Characterization of Debris Avalanche deposits in Japan. J Volcan Geoth Res 29(1–4):231–243

    Article  Google Scholar 

  • Urlaub M, Petersen F, Gross F, Bonforte A, Puglisi G, Guglielmino F, Krastel S, Lange D, Kopp H (2018) Gravitational collapse of Mount Etna’s southeastern flank. Sci Adv 4(10):eaat9700.

    Google Scholar 

  • Usami T (1996) Materials for comprehensive list of destructive earthquakes in Japan, 416-1995. Revised and Enlarged Edition. University of Tokyo Press, Tokyo

    Google Scholar 

  • Valderrama P, Roche O, Samaniego P, van Wyk de Vries B, Bernard K, Mariño J, (2016) Dynamic implications of ridges on a debris avalanche deposit at Tutupaca volcano (southern Peru). Bull Volcan 78:14

    Article  Google Scholar 

  • Villemant B, Komorowski JC, Dessert C, Michel A, Crispi O, Hammouya G, Beauducel F, De Chabalier JB (2014) Evidence for a new shallow magma intrusion at La Soufrière of Guadeloupe (Lesser Antilles). J Vol Geoth Res 285:247–277

    Article  Google Scholar 

  • Vallance JW, Scott KM (1997) The Osceola mudflow from Mount Rainier: sedimentology and hazard implication of a huge clay-rich debris flow. GSA Bull 109:143–163

    Article  Google Scholar 

  • Vallance JW, Siebert L, Rose WI, Girón JR, Banks NL (1995) Edifice collapse and related hazards in Guatemala. In: Ida Y, Voight B (eds) Models of magmatic processes and volcanic eruptions. J Volcanol Geotherm Res 66:337–345

    Google Scholar 

  • Van Bemmelen RW (1949) The geology of Indonesia: The Hague, Government Printing Office, p 732

    Google Scholar 

  • van Wyk de Vries B (1998) Extension induced by volcanic loading in regional strike-slip zones. Geology 26(11):983–986

    Google Scholar 

  • van Wyk de Vries B, Davies T (2015) Landslides, debris avalanches, and volcanic gravitational deformation. In: The encyclopedia of volcanoes. Academic Press, pp 665–685

    Google Scholar 

  • van Wyk de Vries B, Matela RJ (1998) Styles of volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion. J Vol Geoth Res 81:1–18

    Google Scholar 

  • van Wyk de Vries B, Merle O (1996) The effect of volcanic constructs on rift fault patterns. Geology 24(7):643

    Google Scholar 

  • van Wyk de Vries B, Kerle N, Petley D, (2000) A sector-collapse forming at Casita volcano. Geology 28:167–170

    Article  Google Scholar 

  • van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche: J Vol Geoth Res 105:225–247

    Google Scholar 

  • Verrucci L, Tommasi P, Boldini D, Graziani A, Rotonda T (2019) Modelling the instability phenomena on the NW flank of Stromboli Volcano (Italy) due to lateral dyke intrusion. J Vol Geoth Res 371:245–262

    Article  Google Scholar 

  • Vidal N, Merle O (2000) Reactivation of basement faults beneath Volcanoes: A new model of flank collapse. J Vol Geoth Res 99(1–4):9–26

    Article  Google Scholar 

  • Villemant B, Komorowski JC, dessert c, Michel A, Crispi O, Hammouya G, Beauducel F, DE Chabalier JB (2014) Evidence for a new shallow magma intrusion at La Soufrière of Guadeloupe (Lesser Antilles) Insights form long-term geochemical monitoring of halogen-rish hydrothermal fluids. J Vol Geoth Res 285:247–277

    Google Scholar 

  • Voight B (2000) Structural stability of andesite volcanoes and lava domes. Philosophical Transactions of the Royal Society of London. Series A: Math Physic Engin Sci 358(1770):1663–1703

    Google Scholar 

  • Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique 47(1):1–31

    Article  Google Scholar 

  • Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In The 1980 Eruptions of Mount St. Helens, Washington (1250: 347–377). US Geol Surv Prof Pap

    Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:243–273

    Article  Google Scholar 

  • Voight B, Komorowski JC, Norton GE, Belousov AB, Belousova M, Boudon G, Young SR (2002) The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills volcano, Montserrat. Geol Soc London Memoirs 21(1):363–407

    Article  Google Scholar 

  • Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38(3–4):261–297

    Article  Google Scholar 

  • Wang J, Ward SN, Xiao L (2019) Tsunami Squares modeling of landslide generated impulsive waves and its application to the 1792 Unzen-Mayuyama mega-slide in Japan. Eng Geol 256:121–137

    Article  Google Scholar 

  • Watanabe K, Hoshizumi H, Itaya T (1993) K-Ar ages of Unzen Volcano in Kyushu, Japan: with some aspects of geology of Mayu-Yama

    Google Scholar 

  • Watt SFL, Karstens J, Micallef A, Berndt C, Urlaub M, Ray M, Desai A, Sammartini M, Klaucke I, Böttner C, Day S, Downes H, Kühn M, Elger J (2019) From catastrophic collapse to multi-phase deposition: flow transformation, seafloor interaction and triggered eruption following a volcanic-island landslide. Ear Plan Sci Lett 517:135–147

    Article  Google Scholar 

  • Watt SFL, Karstens J, Berndt C (2020) Volcanic-island lateral collapse and their submarine deposits. In: Roverato M, Dufresne A, Procter J (eds) Volcanic Dedris Avalanches: from collapse to hazard. Advances in volcanology. Springer, Berlin

    Google Scholar 

  • Waythomas CF, Wallace KL (2002) Flank collapse at Mount Wrangell, Alaska, recorded by volcanic mass-flow deposits in the Copper River lowland. Canad J Earth Sci 39:1257–1279

    Article  Google Scholar 

  • Waythomas CF, Miller TP, Begét JE (1999) Record of late Holocene debris avalanche and lahar formation at Iliamna Volcano. Alaska. Am Geophys Union Trans 80:F1140

    Google Scholar 

  • Williams R, Rowley P, Garthwaite MC (2019) Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami. Geology 47(10):973–976

    Article  Google Scholar 

  • Wooller L, van Wyk de Vries B, Murray JB, Rymer H, Meyer S (2004) Volcano spreading controlled by dipping substrata. Geology 32(7):573-576

    Google Scholar 

  • Wooller L, van Wyk de Vries B, Cecchi E, Rymer H (2009) Analogue models of the effect of long-term basement fault movement on volcanic edifices. Bull Volc 71(10):1111–31

    Google Scholar 

  • Zernack AV, Cronin SJ, Bebbington MS, Smith IEM, Price RC, Procter JN (2012) Forecasting catastrophic stratovolcano collapse, a model based on Mt. Taranaki, New Zealand. Geology 40:983–986

    Article  Google Scholar 

  • Zimbelman DR (1996) Hydrothermal alteration and its influence on volcanic hazards Mount Rainier, Washington, a case history. PhD Thesis, Univ. Colorado, Boulder

    Google Scholar 

  • Zimbelman DR, Watters RJ, Firth IR, Breit GN, Carrasco-Nuñez G (2004) Stratovolcano stability assessment methods and results from Citlaltepetl, Mexico. Bull Volc 66:66–79

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Marc-André Brideau and Lucia Capra reviewers for their important suggestions and corrections that helped to notably improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Roverato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roverato, M., Di Traglia, F., Procter, J., Paguican, E., Dufresne, A. (2021). Factors Contributing to Volcano Lateral Collapse. In: Roverato, M., Dufresne, A., Procter, J. (eds) Volcanic Debris Avalanches. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/978-3-030-57411-6_5

Download citation

Publish with us

Policies and ethics