Skip to main content

A New Design for Robust Control of Power System Stabilizer Based on Moth Search Algorithm

  • Chapter
  • First Online:
Metaheuristics and Optimization in Computer and Electrical Engineering

Abstract

This paper presents a new optimal design for the stability and control of the synchronous machine connected to an infinite bus. The model of the synchronous machine is 4th order linear Philips-Heffron synchronous machine. In this study, a PID controller is utilized for stability and its parameters have been achieved optimally by minimizing a fitness function to removes the unstable Eigen-values to the left-hand side of the imaginary axis. The considered parameters of the PID controller are optimized based on a new nature-inspired, called moth search algorithm. The proposed system is then compared with the particle swarm optimization as a high-performance and popular algorithm for different operating points. Final results show that using a moth search algorithm gives better efficiency toward the compared particle swarm optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hosseini H, Tusi B, Razmjooy N, Khalilpoor M (2011) Optimum design of PSS and SVC controller for damping low frequency oscillation (LFO). In: 2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA), pp 62–67

    Google Scholar 

  2. Sahu PR, Hota PK, Panda S (2018) Comparison of grasshopper and whale optimization algorithm for design of FACTS controller with power system stabilizer. In: 2018 fifth international conference on parallel, distributed and grid computing (PDGC), pp 424–429

    Google Scholar 

  3. Razmjooy N, Khalilpour M (2015) A robust controller for power system stabilizer by using artificial bee colony algorithm. Tech J Engin App Sci 5:106–113

    Google Scholar 

  4. Razmjooy N, Madadi A, Ramezani M (2017) Robust control of power system stabilizer using world cup optimization algorithm. Int J Inf Secur Syst Manag 5:7

    Google Scholar 

  5. Chitara D, Niazi KR, Swarnkar A, Gupta N (2018) Cuckoo search optimization algorithm for designing of a multimachine power system stabilizer. IEEE Trans Ind Appl 54:3056–3065

    Article  Google Scholar 

  6. Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput 10:151–164

    Article  Google Scholar 

  7. Moallem P, Razmjooy N (2012) Optimal threshold computing in automatic image thresholding using adaptive particle swarm optimization. J Appl Res Technol 10:703–712

    Article  Google Scholar 

  8. Bansal JC (2019) Particle swarm optimization. In: Evolutionary and swarm intelligence algorithms. Springer, Berlin, pp 11–23

    Google Scholar 

  9. Butt AA, Khan ZA, Javaid N, Chand A, Fatima A, Islam MT (2019) Optimization of response and processing time for smart societies using particle swarm optimization and Levy Walk. In: International conference on advanced information networking and applications, pp 14–25

    Google Scholar 

  10. de Jesus MA, Estrela VV, Saotome O, Stutz D (2018) Super-resolution via particle swarm optimization variants. In: Biologically rationalized computing techniques for image processing applications. Springer, Berlin, pp 317–337

    Google Scholar 

  11. AminShokravi A, Eskandar H, Derakhsh AM, Rad HN, Ghanadi A (2018) The potential application of particle swarm optimization algorithm for forecasting the air-overpressure induced by mine blasting. Eng Comput 34:277–285

    Article  Google Scholar 

  12. Banharnsakun A (2018) Artificial bee colony algorithm for enhancing image edge detection. Evolv Syst 1–9

    Google Scholar 

  13. Razmjooy N, Khalilpour M (2015) A robust controller for power system stabilizer by using Artificial Bee Colony Algorithm

    Google Scholar 

  14. Sharifi S, Sedaghat M, Farhadi P, Ghadimi N, Taheri B (2017) Environmental economic dispatch using improved artificial bee colony algorithm. Evolv Syst 8:233–242

    Article  Google Scholar 

  15. Moazenzadeh R, Mohammadi B, Shamshirband S, Chau K-W (2018) Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Eng Appl Comput Fluid Mech 12:584–597

    Google Scholar 

  16. Zamani MKM, Musirin I, Hassan H, Shaaya SA, Sulaiman SI, Ghani NAM et al (2018) Active and reactive power scheduling optimization using firefly algorithm to improve voltage stability under load demand variation. Indonesian J Electr Eng Comput Sci 9:365–372

    Article  Google Scholar 

  17. Razmjooy N, Khalilpour M, Ramezani M (2016) A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system. J Control Automat Electr Syst 27:419–440

    Article  Google Scholar 

  18. Razmjooy N, Ramezani M (2014) An improved quantum evolutionary algorithm based on invasive weed optimization. Indian J Sci Res 4:413–422

    Google Scholar 

  19. Namadchian A, Ramezani M, Razmjooy N (2016) A New Meta-heuristic algorithm for optimization based on variance reduction of Guassian distribution. Majlesi J Electr Eng 10:49

    Google Scholar 

  20. Callahan PS (1977) Moth and candle: the candle flame as a sexual mimic of the coded infrared wavelengths from a moth sex scent (pheromone). Appl Opt 16:3089–3097

    Article  Google Scholar 

  21. Mohammadi RS, Mehdizadeh A, Kalantari NT (2017) Applying TID-PSS to Enhance Dynamic Stability of Multi-Machine Power Systems. Trans Electr Electron Mater (TEEM) 18:287–297

    Google Scholar 

  22. Hemmati R (2018) Power system stabilizer design based on optimal model reference adaptive system. Ain Shams Eng J 9:311–318

    Article  Google Scholar 

  23. Farhad Z, Ibrahim E, Tezcan SS, Safi SJ (2018) A robust PID power system stabilizer design of single machine infinite bus system using firefly algorithm. Gazi Univ J Sci 31:155–172

    Google Scholar 

  24. Moutis P, Amini H, Khan IA, He G, Mohammadi J, Kar S et al (2019) A survey of recent developments and requirements for modern power system control. In: Pathways to a smarter power system. Elsevier, pp 289–315

    Google Scholar 

  25. Hossain SJ, Bhattarai R, Yousefian R, Kamalasadan S (2018) Adaptive wide area damping controller for distributed energy resources integrated power grid. In: 2018 IEEE Power & Energy Society General Meeting (PESGM), pp 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Razmjooy .

Editor information

Editors and Affiliations

Appendixes

Appendixes

System data:

Machine (pu):

xd = 1.6, xd = 0.32, xq = 1.55.

vt0 = 1.05, w0 = 314(rad/s), Td0′ = 6.0 (s).

D = 0; M = 10.

P, Q = Electrical active and reactive power of output machine (pu).

Transmission Line (Pu):

re = 0; xe = 0.4

Exciter:

Ke = 50; Te = 0.05 (s).

Washout Filter:

Tw = 5 (s).

The function of k-parameters and other data are presented below:

iq0 = (P * vt0)/sqrt((P * xq) 2 + (vt02 + Q * xq) 2);

vd0 = iq0 * xq;

vq0 = ((vt02) − (vd02)) 0.5;

id0 = (Q + xq*(iq02))/vq0;

Eq0 = vq0 + id0*xq;

E0 = sqrt((vd0 + iq0 * xe)2 + (vq0-id0 * xe)2);

delta = tan−1((vd0 + iq0*xe)/(vq0 − id0*xe));

K1 = (((xq − xd′)/(xe + xd′))*(iq0 * E0 * sin(delta))) + ((Eq0 * E0 * cos(delta))/(xe + xq));

K2 = (E0 * sin(delta))/(xe + xd);

K3 = (xe + xd)/(xe + xd);

K4 = ((xd − xd′)/(xe + xd)) * (E0 * sin(delta));

 K5 = ((xq * vd0 * E0 * cos(delta))/((xe + xq) * vt0)) − ((xd * vd0 * E0 * sin(delta))/((xe + xd) * vt0));

K6 = (xe * vq0)/((xe + xd) * vt0);

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razmjooy, N., Razmjooy, S., Vahedi, Z., Estrela, V.V., de Oliveira, G.G. (2021). A New Design for Robust Control of Power System Stabilizer Based on Moth Search Algorithm. In: Razmjooy, N., Ashourian, M., Foroozandeh, Z. (eds) Metaheuristics and Optimization in Computer and Electrical Engineering. Lecture Notes in Electrical Engineering, vol 696. Springer, Cham. https://doi.org/10.1007/978-3-030-56689-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56689-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56688-3

  • Online ISBN: 978-3-030-56689-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics