Skip to main content

Direct Determination of Viscosity of Supercritical Solutions

  • Chapter
  • First Online:
Ammonothermal Synthesis and Crystal Growth of Nitrides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 304))

  • 582 Accesses

Abstract

The following chapter is mainly aimed at simulators and crystal growers, as viscosity has an influence on the flow behaviour in the reactor and the diffusion coefficient in the crystal’s vicinity. So, the chapter gives an overview of influencing factors to viscosity in ammonothermal media, which are the pressure and temperature as well as the concentration of used mineralizers. Therefore, different possible viscometers are described and discussed in detail for its potential use in ammonothermal media. Hereby two promising options are presented in detail: a modified rolling ball viscometer as well as an adaptation of the ultrasonic pulse-echo method for viscosity measurement for ammonothermal systems. While the last is mostly based on literature research and only some general prove of principle are carried out, the first one is fully described and analysed during operation. This means for the adaptation of this principle four critical aspects have to be overcome. As a result, the viscosity of ammonia in the range above 400 °C up to 600 °C at maximum pressure of 252 MPa is shown. Additionally, some measurements of ammonia-ammonium-fluoride-mixtures are compared with pure ammonia, whereas the viscosity is about 1.4 times lager with ammonium fluoride then without.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  1. H. Enayati, A.J. Chandy, M.J. Braun, N. Horning, 3D large eddy simulation (LES) calculations and experiments of natural convection in a laterally-heated cylindrical enclosure for crystal growth. Int. J. Therm. Sci. 1–21 (2017)

    Google Scholar 

  2. Q.S. Chen, S. Pendurti, V. Prasad, Effects of baffle design on fluid flow and heat transfer in ammonothermal growth of nitrides. J. Cryst. Growth 271–277 (2004)

    Google Scholar 

  3. J. Erlekampf, J. Seebeck, P. Savva, E. Meissner, J. Friedrich, N.S.A. Alt, E. Schlücker, L. Frey, Numerical time-dependent 3D simulation of flow pattern and heat distribution in an ammonothermal system with various baffle shapes. J. Cryst. Growth 403, 96–104 (2014)

    Article  CAS  Google Scholar 

  4. D. Ehrentraut, Y. Kagamitani, C. Yokoyama, T. Fukuda, Physico-chemical features of the acid ammonothermal growth of GaN. J. Cryst. Growth 310, 891–895 (2008)

    Article  CAS  Google Scholar 

  5. N. Alt, E. Meissner, E. Schlücker, L. Frey, In situ monitoring technologies for ammonthermal reactors. Phys. Status Solidi 9, 436–439 (2012)

    CAS  Google Scholar 

  6. J. Kunes, Dimensionless Physical Quantities in Science and Engineering (Elsevier, London, Waltham, 2012)

    Google Scholar 

  7. T. Chen, H. John, J. Xu, Q. Lu, J. Hawk, X. Liu, Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 2: Effect of aging treatment. Corros. Sci. 78, 151–161 (2014)

    Google Scholar 

  8. Q. Chen, Y. Jiang, J. Yan, M. Qin, Progress in modeling of fluid flows in crystal growth processes. Prog. Nat. Sci. 18, 1465–1473 (2008)

    Article  CAS  Google Scholar 

  9. Q.S. Chen, S. Pendurti, V. Prasad, Modeling of ammonothermal growth of gallium nitride single crystals. J. Mater. Sci. 41, 1409–1414 (2006)

    Article  CAS  Google Scholar 

  10. Y. Masuda, A. Suzuki, T. Ishiguro, C. Yokoyama, Numerical simulation of heat and fluid flow in ammonothermal gan bulk crystal growth process. Jpn. J. Appl. Phys. 52, 08JA05 (2013)

    Google Scholar 

  11. L. Kulisiewicz, A. Delgado, High-pressure rheological measurement methods: a review. Appl. Rheol. 20, 13018 (2010)

    Google Scholar 

  12. E. Kuss, Federbalg-Kapillar-Viskosimeter, Patent DE 3237 130 A1

    Google Scholar 

  13. S. Kawashima, Z. Shirahama, N. Hidekazu, Capillary type viscosimeter, US Patent US4932242A

    Google Scholar 

  14. G.D. Galvin, J.F. Hutton, B. Jones, Development of a high-pressure, high-shear-rate capillary viscometer. J. Nonnewton. Fluid Mech. 8, 11–28 (1981)

    Article  Google Scholar 

  15. V. Semjonow, Über ein Rotationsviskosimeter zur Messung der Druckabhängigkeit der Viskosität hochpolymerer Schmelzen. Rheol. Acta 2, 138–143 (1962)

    Article  CAS  Google Scholar 

  16. R.J. Murphy, Apparatus and method for measuring viscosity, US Patent US4571988A

    Google Scholar 

  17. S.-H. Sheen, H.-T. Chien, A.C. Paul Raptis, in Instrumentation for Fluid Particle Flow (Elsevier, 1999), pp. 162–211

    Google Scholar 

  18. T. Retsina, S.M. Richardson, W.A. Wakeham, The theory of a vibrating-rod viscometer. Appl. Sci. Res. 43, 325–346 (1987)

    Article  Google Scholar 

  19. J.V. Fitzgerald, F.J. Matusik, J.L. Batton, High Viscosity transducer for vibratory viscometer, US Patent US5317908A

    Google Scholar 

  20. G. Bradfield, Improvements in or relating to Viscometers, Patent GB910881A

    Google Scholar 

  21. S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical ammonia solutions. J. Supercrit. Fluids 110, 193–229 (2016)

    Article  CAS  Google Scholar 

  22. J. Spurk, N. Aksel, Strömungslehre (Springer, Berlin, 2010)

    Book  Google Scholar 

  23. H. Herwig, Strömungsmechanik: Einführung in die Physik von technischen Strömungen (Vieweg+Teubner Verlag/GWV Fachverlage GmbH, Wiesbaden, 2008)

    Google Scholar 

  24. J. Draxler, M. Siebenhofer, Verfahrenstechnik in Beispielen Problemstellungen, Lösungsansätze, Rechenwege (Springer, Wiesbaden, 2014)

    Google Scholar 

  25. VDI Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, VDI-Wärmeatlas, 11th edn. (Springer, Heidelberg, 2013)

    Google Scholar 

  26. W. Sutherland, LII. The viscosity of gases and molecular force. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 507–531 (1893)

    Google Scholar 

  27. M.M. Lencka, A. Anderko, S.J. Sanders, R.D. Young, Modeling viscosity of multicomponent electrolyte solutions 1 (1998)

    Google Scholar 

  28. G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929)

    Article  CAS  Google Scholar 

  29. H.D.B. Jenkins, Y. Marcus, Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995)

    Article  CAS  Google Scholar 

  30. D. Feakins, K.G. Lawrence, The relative viscosities of solutions of sodium and potassium chlorides and bromides in N-methylformamide at 25, 35, and 45°. J. Chem. Soc. A 212–219 (1966)

    Google Scholar 

  31. M.A. Motin, Temperature and concentration dependence of apparent molar volumes and viscosities of NaCl, NH4Cl, CuCl2, CuSO4, and MgSO4 in pure water and water + urea mixtures. J. Chem. Eng. Data 49, 94–98 (2004)

    Article  CAS  Google Scholar 

  32. R. Saeed, F. Uddin, S. Masood, N. Asif, Viscosities of ammonium salts in water and ethanol + water systems at different temperatures. J. Mol. Liq. 146, 112–115 (2009)

    Article  CAS  Google Scholar 

  33. H. Baser, W. Schwieger, D. Freitag, T.G. Steigerwald, E. Schluecker, Solubility studies of sodium azide in liquid ammonia by in situ ultrasonic velocity measurement. Chem. Eng. Technol. 40, 1101–1106 (2017)

    Article  CAS  Google Scholar 

  34. F. Cohen-Tenoudji, L.A. Ahlberg, B.R. Tittmann, W.J. Pardee, High temperature ultrasonic viscometer, US Patent US4779452A

    Google Scholar 

  35. S.J. Kleis, L.A. Sanchez, Dependence of speed of sound on salinity and temperature in concentrated NaCl solutions. Sol. Energy (1990)

    Google Scholar 

  36. S. Natarajan, T.W. Randolph, Ultrasonic velocity measurements in supercritical jet fuel, J. Supercrit. Fluids 10, 65–70 (1997)

    Google Scholar 

  37. S.H. Sheen, H.-T. Chien, A.C. Raptis, in Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti, vol. 14 (Plenum Press, New York, 1995), pp. 1151–1158

    Google Scholar 

  38. W. Roth, S.R. Rich, A new method for continuous viscosity measurement. General theory of the ultra-viscoson. J. Appl. Phys. 24, 940 (1953)

    Google Scholar 

  39. V. Shah, K. Balasubramaniam, R.D. Costley, J. Singh, in Review of Progress in Quantitative Nondestructive Evaluation (Springer US, Boston, MA, 1996), pp. 2067–2071

    Google Scholar 

  40. S.-H. Sheen, A.C. Raptis, A Feasibility Study on Advanced Techniques for On-line Monitoring of Coal Slurry Viscosity. Argonne Natl. Lab. Tech. Memo. 87 (1987)

    Google Scholar 

  41. R. Kažys, A. Voleišis, B. Voleišienė, High temperature ultrasonic transducers: review. Ultragarsas “Ultrasound” 63, 7–17 (2016)

    Google Scholar 

  42. J.O. Kim, H.H. Bau, Instrument for simultaneous measurement of density and viscosity. Rev. Sci. Instrum. 60, 1111–1115 (1989)

    Article  CAS  Google Scholar 

  43. S.H. Sheen, K.J. Reimann, W.P. Lawrence, A.C. Raptis, in Ultrasonics Symposium Proceedings (IEEE, 1988), pp. 537–541

    Google Scholar 

  44. H.J. Mcskimin, P. Andreatch, Measurement of dynamic shear impedance of low viscosity liquids at ultrasonic frequencies. J. Acoust. Soc. Am. 42, 248–252 (1967)

    Article  CAS  Google Scholar 

  45. S. Sherrit, X. Bao, Y. Bar-Cohen, Z. Chang, in Smart Structures and Materials 2004: Active Materials, ed. by D.C. Lagoudas (International Society for Optics and Photonics, 2004), p. 411

    Google Scholar 

  46. K. Balasubramaniam, V.V. Shah, R.D. Costley, G. Boudreaux, J.P. Singh, High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts. Rev. Sci. Instrum. 70, 4618 (1999)

    Article  CAS  Google Scholar 

  47. R.S. Moore, H.J. McSkimin, in Physical Acoustics (1970), pp. 167–242

    Google Scholar 

  48. T.G. Steigerwald, N.S.A. Alt, B. Hertweck, E. Schlücker, Feasibility of density and viscosity measurements under ammonothermal conditions. J. Cryst. Growth 403, 59–65 (2014)

    Article  CAS  Google Scholar 

  49. R.M. Hubbard, G.G. Brown, The rolling ball viscometer. Ind. Eng. Chem. Anal. Ed. 15, 212–218 (1943)

    Article  CAS  Google Scholar 

  50. H.H. Buchter, Apparate und Armaturen der Chemischen Hochdrucktechnik Konstruktion, Berechnung und Herstellung (Springer, Berlin, 2014)

    Google Scholar 

  51. Lamineries Matthey SA Inc., Legierung 718, 3 (2013)

    Google Scholar 

  52. D. Joshi, Dissertation: Finite element simulation of machining a Nickel-based superalloy—Inconel 718, Oklahoma State University (2000)

    Google Scholar 

  53. Metals VDM Inc., VDM® Alloy 718, Datasheet (2016)

    Google Scholar 

  54. E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical Properties of Fluid Systems, NIST Stand (National Institute of Standards and Technology, Gaithersburg, MD, 2017)

    Google Scholar 

  55. T. Okamoto, Falling Body Viscometer, US Patent 3512396

    Google Scholar 

  56. I. Fehrenkemper, Aluminium-Nickel-Kobalt (AlNiCo) (2018), https://www.fehrenkemper.de/produkte/rohmagnete/aluminium-nickel-kobalt-alnico/. Accessed 15 Dec 2019

  57. K. Nishibata, M. Izuchi, A rolling ball viscometer for high pressure use. Phys. B + C 139, 903–906 (1986)

    Google Scholar 

  58. TC Direct, TC Direct für Temperatur-Sensoren, -Messung und -Regelung (2019), https://www.tcdirect.de/Default.aspx?level=2&department_id=190/3. Accessed 23 Mar 2019

  59. Deutsches Institut für Normung e. V, Thermoelemente - Teil 1: Thermospannungen und Grenzabweichungen (IEC 60584-1:2013); Deutsche Fassung EN 60584-1:2013 (Germany, 2013), p. 65

    Google Scholar 

  60. HBM Germany, Drucktransmitter|P 2VA1/P2VA2|Integrierter Verstärker| HBM (2019), https://www.hbm.com/de/2479/p2va1-p2va2-drucktransmitter/. Accessed 23 Mar 2019

  61. E. Schrüfer, L.M. Reindl, B. Zagar, Elektrische Messtechnik: Messung elektrischer und nichtelektrischer Größen (Carl Hanser Verlag GmbH & Co. KG, München, 2018)

    Book  Google Scholar 

  62. S. Hesse, G. Schnell, Sensoren für die Prozess- und Fabrikautomation, 7th edn. (Springer, Plauen, 2009)

    Book  Google Scholar 

  63. Sensors GEMAC, IS2BP090-U-CL (2019), https://gemac-sensors.com/de/sensoren/neigungssensoren/is2bp090-u-cl/. Accessed 24 Mar 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Steigerwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steigerwald, T.G., Schlücker, E. (2021). Direct Determination of Viscosity of Supercritical Solutions. In: Meissner, E., Niewa, R. (eds) Ammonothermal Synthesis and Crystal Growth of Nitrides. Springer Series in Materials Science, vol 304. Springer, Cham. https://doi.org/10.1007/978-3-030-56305-9_8

Download citation

Publish with us

Policies and ethics