Skip to main content

Control of Crystallization Pathways by Electric Fields

  • Chapter
  • First Online:
Crystallization as Studied by Broadband Dielectric Spectroscopy

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

Polar molecular materials subject to high electric fields of magnitude E lead to situations which are usually characterized by dipole energies (μE) that remain small compared with the thermal energy, i.e., μE << kBT. As a result, typical nonlinear dielectric effects are very small and electric fields are expected to have little impact on the net molecular orientation and on thermodynamic potentials. Nevertheless, static electric fields in the range from 40 to 200 kV cm−1 were observed to impact the crystallization dynamics and pathway of a polar molecular glass-former: vinyl ethylene carbonate (VEC), a derivative of propylene carbonate. Various temperature/field protocols have been employed to reveal the effect of a static electric field on the crystallization behavior of VEC. The volume fraction of the liquid state is measured via the dielectric permittivity. The rate of crystallization could be accelerated by more than a factor of 10, either by applying a field near the glass transition temperature, Tg, and then taking the sample to a higher crystallization temperature Tc without field, or by taking the sample directly from T > Tm to Tc, where Tm is the melting temperature, and then applying an electric field. Interestingly, crystallization promoted by electric fields gave rise to a new polymorph that could not be obtained in the absence of an electric field. The signature of this new structure is a melting temperature that was observed to be 20 K below that of the ordinary crystal of VEC. Because VEC is a simple polar molecule, these field-induced features are expected to occur in many other materials having sufficient permanent dipole moments. Our results highlight the important role of an external electric field as additional control variable to influence the crystallization tendency of molecular glass-formers, and provide new opportunities in pharmaceutical science or organic electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDS:

Broadband dielectric spectroscopy

ε:

High-frequency limit dielectric constant

εs:

Static dielectric constant

J:

Nucleation rate

MWS:

Maxwell–Wagner–Sillars

PC:

Propylene carbonate

RMS:

Root mean square

Tg:

Glass transition temperature

Tm:

Melting temperature

TTT:

Time-temperature-transformation

u:

Crystal growth rate

VEC:

Vinyl ethylene carbonate

References

  1. Haleblian J, McCrone W (1969) J Pharm Sci 58:911

    Article  CAS  PubMed  Google Scholar 

  2. Lendlein A, Kelch S (2002) Angew Chem 41:2034

    Article  CAS  Google Scholar 

  3. Novoa JJ, Braga D, Addadi L (eds) (2008) Engineering of Crystalline Materials Properties. Springer, Berlin

    Google Scholar 

  4. Myerson A (2002) Handbook of Industrial Crystallization. Butterworth Heinemann, Boston

    Google Scholar 

  5. Schmelzer JWP, Abyzov AS, Fokin VM, Schick C, Zanotto ED (2015) J Non-Cryst Solids 429:24

    CAS  Google Scholar 

  6. Kashchiev D (1972) J Cryst Growth 13–14:128–130

    Article  Google Scholar 

  7. Kashchiev D (1972) Philos Mag.25:459–470

    Article  CAS  Google Scholar 

  8. Isard JO (1977) Philos Mag 35:817–819

    Article  CAS  Google Scholar 

  9. Ziabicki A, Jarecki L (1996)  Macromol Symp 104:65–87

    Article  CAS  Google Scholar 

  10. Richert R (2018) J Chem Phys 149:240901

    Article  PubMed  Google Scholar 

  11. Uhlmann DR, J. Non-Cryst Solids (1972) 7:337

    CAS  Google Scholar 

  12. Schmelzer JWP (2008) J Non-Cryst Solids 354:269–278

    Article  CAS  Google Scholar 

  13. Ngai KL, Magill JH, Plazek DJ (2000) J Chem Phys 112:1887–1892

    Article  CAS  Google Scholar 

  14. Ediger MD, Harrowell P, Yu L (2008) J Chem Phys 128:034709

    Google Scholar 

  15. Fröhlich H (1958) Theory of dielectrics. Clarendon, Oxford

    Google Scholar 

  16. Adrjanowicz K, Paluch M, Richert R (2018) Phys Chem Chem Phys 20:925

    Google Scholar 

  17. Jensen MH, Alba-Simionesco C, Niss K, Hecksher T (2015) J Chem Phys 143:134501

    Article  CAS  PubMed  Google Scholar 

  18. Scaife BKP (1989) Principles of Dielectrics. Clarendon Press, Oxford

    Google Scholar 

  19. Kremer F, Schönhals A (eds) (2002) Broadband Dielectric Spectroscopy. Springer, Berlin

    Google Scholar 

  20. Wagner KW (1914) Arch Electrotech 2:371

    Google Scholar 

  21. Sillars RW (1937) J Inst Electr Eng 80:378

    Google Scholar 

  22. Massalska-Arodz M, Williams G, Thomas DK, Jones WJ, Dabrowski R (1999) J Phys Chem B 103:4197

    Google Scholar 

  23. Alie J, Menegotto J, Cardon P, Duplaa H, Caron A, Lacabanne C, Bauer M (2003) J Pharm Sci 93:218

    Google Scholar 

  24. Adrjanowicz K, Kaminski K, Wojnarowska Z, Dulski M, Hawelek L, Pawlus S, Paluch M, Sawicki W (2010) J. Phys. Chem. B 114:6579

    Google Scholar 

  25. Ezquerra TA, Majszczyk J, Balta-Calleja FJ, López-Cabarcos E, Gardner KH, Hsiao BS (1994) Phys Rev B 50:6023

    Google Scholar 

  26. Adrjanowicz K, Grzybowski A, Grzybowska K, Pionteck J, Paluch M (2014) Cryst Growth Des 14:2097

    Article  CAS  Google Scholar 

  27. Wagner H, Richert R (1999) J Phys Chem B 103:4071

    Article  CAS  Google Scholar 

  28. Evans GJ (1984) Mat Lett 2:420

    Article  CAS  Google Scholar 

  29. Kotsuki K, Obata S, Saiki K (2014) Langmuir 30:14286

    Article  CAS  PubMed  Google Scholar 

  30. Parks C, Koswara A, Tung H-H, Nere N, Bordawekar S, Nagy ZK, Ramkrishna D (2017) Cryst Growth Des 17:3751

    Article  CAS  Google Scholar 

  31. Taleb M, Didierjean C, Jelsch C, Mangeot JP, Capelle B, Aubry A (1999) J Cryst Growth 200:575

    Google Scholar 

  32. Hammadi Z, Veesler S (2009) Prog Biophys Mol Biol 101:38

    Google Scholar 

  33. Nanev CN, Penkova A (2001) J Cryst Growth 232:285

    Google Scholar 

  34. Aber JE, Arnold S, Garetz BA, Meyerson AS (2005) Phys Rev Lett 94:145503

    Google Scholar 

  35. Di Profio G, Reijonen MT, Caliandro R, Guagliardi A, Curcio E, Drioli E (2013) Phys Chem Chem Phys 15:9271

    Google Scholar 

  36. Gattef E, Dimitriev Y (1979) Phil Mag B 40:233

    Google Scholar 

  37. Gattef E, Dimitriev Y (1981) Phil Mag B 43:333

    Google Scholar 

  38. Gutzow I, Schmelzer JWP (2013) The vitreous state: thermodynamics, structure, rheology, and crystallization. Springer, Heidelberg

    Book  Google Scholar 

  39. Young-Gonzales AR, Adrjanowicz K, Paluch M, Richert R (2017) J Chem Phys 147:224501

    Google Scholar 

  40. Jedrzejowska A, Wojnarowska Z, Adrjanowicz K, Ngai KL, Paluch M (2017) J Chem Phys 146:094512

    Google Scholar 

  41. Jedrzejowska A, Ngai KL, Paluch M (2016) J Phys Chem A 120:8781

    Google Scholar 

  42. Simeral L, Amey RL (1970) J Phys Chem 74:1443

    Google Scholar 

  43. Lee AY, Erdemir D, Myerson AS (2011) Annu Rev Chem Biomol Eng 2:259

    Google Scholar 

  44. Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J (2001) Pharm Res 18:859

    Google Scholar 

  45. Bernstein J (2002) Polymorphism in Molecular Crystals. Oxford Univ. Press, New York

    Google Scholar 

  46. Yu L (2010) Acc Chem Res 43:1257

    Google Scholar 

  47. Habgood M, Sugden IJ, Kazantsev AV, Adjiman CS, Pantelides CC (2015) J Chem Theory Comput 11:1957

    Google Scholar 

Download references

Acknowledgments

KA is grateful for the financial support from the National Science Centre within the framework of the SONATA BIS project (Grant No. 2017/26/E/ST3/00077). Fruitful discussions with Lian Yu are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranko Richert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adrjanowicz, K., Richert, R. (2020). Control of Crystallization Pathways by Electric Fields. In: Ezquerra, T.A., Nogales, A. (eds) Crystallization as Studied by Broadband Dielectric Spectroscopy. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-030-56186-4_6

Download citation

Publish with us

Policies and ethics