Skip to main content

Biomechanical Surrogate Modelling Using Stabilized Vectorial Greedy Kernel Methods

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

Abstract

Greedy kernel approximation algorithms are successful techniques for sparse and accurate data-based modelling and function approximation. Based on a recent idea of stabilization (Wenzel et al., A novel class of stabilized greedy kernel approximation algorithms: convergence, stability & uniform point distribution. e-prints. arXiv:1911.04352, 2019) of such algorithms in the scalar output case, we here consider the vectorial extension built on VKOGA (Wirtz and Haasdonk, Dolomites Res Notes Approx 6:83–100, 2013. We introduce the so called γ-restricted VKOGA, comment on analytical properties and present numerical evaluation on data from a clinically relevant application, the modelling of the human spine. The experiments show that the new stabilized algorithms result in improved accuracy and stability over the non-stabilized algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This corresponds to the case of using separable matrix-valued kernels, i.e. K(x, y) := k(x, y) ⋅ I where I is the d × d identity matrix [14].

References

  1. De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317–330 (2005). http://dx.doi.org/10.1007/s10444-004-1829-1

    Article  MathSciNet  Google Scholar 

  2. Dreischarf, M., Zander, T., Shirazi-Adl, A., Puttlitz, C., Adam, C., Chen, C., Goel, V., Kiapour, A., Kim, Y., Labus, K., Little, J., Park, W., Wang, Y., Wilke, H., Rohlmann, A., Schmidt, H.: Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. Journal of Biomechanics 47(8), 1757–1766 (2014). https://doi.org/10.1016/j.jbiomech.2014.04.002

    Article  Google Scholar 

  3. Fasshauer, G.E., McCourt, M.: Kernel-Based Approximation Methods Using MATLAB, Interdisciplinary Mathematical Sciences, vol. 19. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2015)

    MATH  Google Scholar 

  4. Karajan, N., Röhrle, O., Ehlers, W., Schmitt, S.: Linking continuous and discrete intervertebral disc models through homogenisation. Biomechanics and Modeling in Mechanobiology 12(3), 453–66 (2013). https://doi.org/10.1007/s10237-012-0416-5

    Article  Google Scholar 

  5. Monteiro, N.M.B., da Silva, M.P.T., Folgado, J.O.M.G., Melancia, J.P.L.: Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation. Multibody System Dynamics 25(2), 245–270 (2011). https://doi.org/10.1007/s11044-010-9226-7

    Article  Google Scholar 

  6. Müller, S.: Komplexität und stabilität von kernbasierten rekonstruktionsmethoden (complexity and stability of kernel-based reconstructions). Ph.D. thesis, Fakultät für Mathematik und Informatik, Georg-August-Universität Göttingen (2009). https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-B3BA-E

  7. Rupp, T., Ehlers, W., Karajan, N., Günther, M., Schmitt, S.: A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomechanics and Modeling in Mechanobiology 14(5), 1081–1105 (2015)

    Article  Google Scholar 

  8. Santin, G., Haasdonk, B.: Kernel methods for surrogate modelling. Tech. Rep. arXiv:1907.10556, University of Stuttgart (2019). To appear in the MOR Handbook, de Gruyter

    Google Scholar 

  9. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000). http://dx.doi.org/10.1023/A:1019105612985

    Article  MathSciNet  Google Scholar 

  10. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  11. Wenzel, T., Santin, G., Haasdonk, B.: A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution. arXiv e-prints arXiv:1911.04352 (2019)

    Google Scholar 

  12. Wirtz, D., Haasdonk, B.: A vectorial kernel orthogonal greedy algorithm. Dolomites Res. Notes Approx. 6, 83–100 (2013). http://drna.padovauniversitypress.it/system/files/papers/WirtzHaasdonk-2013-VKO.pdf

    Google Scholar 

  13. Wirtz, D., Karajan, N., Haasdonk, B.: Surrogate modeling of multiscale models using kernel methods. International Journal for Numerical Methods in Engineering 101 (2015). https://doi.org/10.1002/nme.4767

  14. Wittwar, D., Santin, G., Haasdonk, B.: Interpolation with uncoupled separable matrix-valued kernels. Dolomites Res. Notes Approx. 11, 23–29 (2018). https://doi.org/10.14658/pupj-drna-2018-3-4. https://drna.padovauniversitypress.it/2018/3/4

Download references

Acknowledgements

The authors acknowledge the funding of the project by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2075 - 390740016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Haasdonk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haasdonk, B., Wenzel, T., Santin, G., Schmitt, S. (2021). Biomechanical Surrogate Modelling Using Stabilized Vectorial Greedy Kernel Methods. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_49

Download citation

Publish with us

Policies and ethics