Skip to main content

A Biomechanical Rider Model for Multibody Applications

  • Conference paper
  • First Online:
  • 1523 Accesses

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 91))

Abstract

The work reviews the most common biomechanical datasets (and related prediction/regression formulas) available in the literature and devises a three-dimensional parametric human model suitable for multibody applications. The focus is on bicycle and motorcycle riders. The model presented has been implemented in ADAMS and compared against experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sharp, R.S., Evangelou, S., Limebeer, D.J.N.: Advances in the modelling of motorcycle dynamics. Multibody Syst. Dyn. 12, 251–283 (2011)

    Article  Google Scholar 

  2. Cossalter, V.: Motorcycle Dynamics. Lulu.com, United Kingdom (2006)

    Google Scholar 

  3. Cossalter, V., Lot, R., Massaro, M.: An advanced multibody code for handling and stability analysis of motorcycles. Meccanica 46, 943–958 (2011)

    Article  MathSciNet  Google Scholar 

  4. Pacejka, H.B.: Tyre and Vehicle Dynamics. 3rd edn. Butterworth-Heinemann, United Kingdom (2012)

    Google Scholar 

  5. Limebeer, D.J.N., Massaro, M.: Dynamics and Optimal Control of Road Vehicles. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

  6. Contini, R.: Body segment parameters, part II. Artif. Limbs 16(1), 1–19 (1972)

    Google Scholar 

  7. Dempster, W.T., Gaughran, G.R.L.: Properties of body segments based on size and weight. Am. J. Anat. 120(1), 33–54 (1967)

    Article  Google Scholar 

  8. Reynolds, H.M.: The inertial properties of the body and its segments. Anthrop. Source Book, Anthrop. Designers 4, 1–75 (1978)

    Google Scholar 

  9. Zatsiorsky, V.M., Seluyanov, V.N., Chugunova, L.G.: Methods of determining mass-inertial characteristics of human body segments. Contemporary Problems of Biomechanics, pp. 272–291. CRC Press, Massachusetts (1990)

    Google Scholar 

  10. De Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  11. Dumas, R., Cheze, L., Verriest, J.P.: Adjustments to mcconville et al. and young et al. body segment inertial parameters. J. Biomech. 40(3), 543–553 (2007)

    Article  Google Scholar 

  12. Drillis, R., Contini, R.: Body segment parameters, New York University School of Engineering and Science, Technical Report pp. 116.03 (1966)

    Google Scholar 

  13. Contini, R.: Body segment parameters (pathological), New York University School of Engineering and Science, Technical Report 1584.03 (1970)

    Google Scholar 

  14. Clauser, C.E., McConville, J.T., Young, J.W.: Weight, volume and center of mass of segments of the human body, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio, Technical Report, pp. 69–70 (1969)

    Google Scholar 

  15. Chandler, R.F., Clauser, C.E., McConville, I.T., Reynolds, H.M., Young, I.W.: Investigation of inertial prorerties or the human body, U.S. Department of Transrortation, Technical Report HS-XOI430 (1975)

    Google Scholar 

  16. Trotter, M., Gleser, G.: A re-evaluation of estimation of stature based on measurements of stature taken during life and of long bones after death. Am. J. Phys. Anthrop. 16(1), 79–123 (1958)

    Article  Google Scholar 

  17. Dempster, W.T., Sherr, L.A., Priest, J.G.: Conversion scales for estimating humeral and femoral lengths and the lengths of functional segments in the limbs of American Caucasoid males. Hum. Biol. 36(3), 242–262 (1964)

    Google Scholar 

  18. Geoffrey, S.P.: A 2-D mannikin - the inside story. X-rays used to determine a new standard for a basic design tool. In: SAE International Congress and Exposition of Automotive Engineering, Detroit, Michigan (1961)

    Google Scholar 

  19. Dempster, W.T.: Space requirements of the seated operator. Wright Air Development Center, Wright- Patterson Air Force Base, Ohio, Technical Report WADC-TR-55-159 (1955)

    Google Scholar 

  20. Becker, E.B.: Measurement of mass distribution parameters of anatomical segments. SAE Trans. 81(720964), 2818–2833 (1972)

    Google Scholar 

  21. Braune, W., Fisher, O.: The center of gravity of the human body as related to the German infantryman. Am. J. Phys. Anthrop. 138, 452 (1889)

    Google Scholar 

  22. McConville, J.T., Churchill, T.D., Kaleps, I., Clauser, C.E., Cuzzi, J.: Anthropometric relationships of body and body segment moments of inertia, Aerospace Medical Research Laboratory, Wright–Patterson Air Force Base, Dayton, Ohio, Technical Report AFAMRL-TR-80-119 (1980)

    Google Scholar 

  23. Young, J.W., Chandler, R.F., Snow, C.C., Robinette, K.M., Zehner, G.F., Lofberg, M.S.: Anthropometric and mass distribution characteristics of the adults female FAA Civil Aeromedical Institute, Oklaoma City, Oklaoma, Technical Report FA-AM-83-16 (1983)

    Google Scholar 

  24. Nishimi, T., Aoki, A., Katayama, T.: Analysis of straight running stability of motorcycles. SAE Technical Paper, vol. 856124 (1985)

    Google Scholar 

  25. Katayama, T., Aoki, A., Nishimi, T., Okayama, T.: Measurements of structural properties of riders. SAE Technical Paper, vol. 871229 (1987)

    Google Scholar 

  26. Imaizumi, H., Fujioka, T., Omae, M.: Rider model by use of multibody dynamics analysis. JSAE Rev. 17(1), 75–77 (1996)

    Article  Google Scholar 

  27. Moore, J.K., Hubbard, M., Kooijman, J.D.G., Schwab, A.L.: A method for estimating physical properties of a combined bicycle and rider. In: ASME IDETC/CIE (2009)

    Google Scholar 

  28. Wittenburg, J.: Dynamics of Multibody Systems. 2nd edn. Springer, United Kingdom (2007)

    Google Scholar 

  29. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, New Jersey (1988)

    Google Scholar 

  30. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  31. de Jalon, G., Bayo, J.E.: Kinematic and Dynamics Simulation of Multibody Systems. Springer, Heidelberg (1994)

    Book  Google Scholar 

  32. Cheli, F., Pennestrì, E.: Cinematica e Dinamica dei Sistemi Multibody. CEA, Milan (2006). (in Italian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Massaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bova, M., Carraretto, G., Lot, R., Massaro, M. (2021). A Biomechanical Rider Model for Multibody Applications. In: Niola, V., Gasparetto, A. (eds) Advances in Italian Mechanism Science. IFToMM ITALY 2020. Mechanisms and Machine Science, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-030-55807-9_18

Download citation

Publish with us

Policies and ethics