Skip to main content

A Novel Integrable Fourth-Order Difference Equation Admitting Three Invariants

  • Conference paper
  • First Online:
Quantum Theory and Symmetries

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

In this short note we present a novel integrable fourth-order difference equation. This equation is obtained as a stationary reduction from a known integrable differential-difference equation. The novelty of the equation is inferred from the number and shape of its invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V.E. Adler, On a discrete analog of the Tzitzeica equation. Preprint (2011). arXiv:1103.5139

    Google Scholar 

  2. V.E. Adler, Integrable Möbius invariant evolutionary lattices of second order. Preprint (2016). arXiv:1605.00018

    Google Scholar 

  3. V.E. Adler, Integrability test for evolutionary lattice equations of higher order. J. Symb. Comput. 74, 125–139 (2016)

    Article  MathSciNet  Google Scholar 

  4. V.I. Arnol’d, Dynamics of complexity of intersections. Bol. Soc. Brasil. Mat. (N.S.) 21, 1–10 (1990)

    Google Scholar 

  5. M. Bellon, C.M. Viallet, Algebraic entropy. Commun. Math. Phys. 204, 425–437 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Bruschi, O. Ragnisco, P.M. Santini, G.Z. Tu, Integrable symplectic maps. Physica D 49(3), 273–294 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. H.W. Capel, R. Sahadevan, A new family of four-dimensional symplectic and integrable mappings. Physica A 289, 80–106 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. E. Celledoni, C. Evripidou, D.I. McLaren, B. Owren, G.R.W. Quispel, B.K. Tapley, P.H. van der Kamp, Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps. J. Phys. A Math. Theor. 52, 31LT01 (11pp) (2019)

    Google Scholar 

  9. D.K. Demskoi, D.T. Tran, P.H. van der Kamp, G.R.W. Quispel, A novel nth order difference equation that may be integrable. J. Phys. A 45, 135,202, (10pp) (2012)

    Google Scholar 

  10. D.K. Demskoy, C.M. Viallet, Algebraic entropy for semi-discrete equations. J. Phys. A Math. Theor. 45, 352,001 (10 pp) (2012)

    Google Scholar 

  11. J. Duistermaat, Discrete Integrable Systems: QRT Maps and Elliptic Surfaces. Springer Monographs in Mathematics (Springer, New York, 2011)

    Google Scholar 

  12. S. Elaydi, An Introduction to Difference Equations, 3rd edn. (Springer, 2005)

    Google Scholar 

  13. G. Falqui, C.M. Viallet, Singularity, complexity, and quasi-integrability of rational mappings. Commun. Math. Phys. 154, 111–125 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Flajolet, A. Odlyzko, Singularity analysis of generating functions. SIAM J. Discr. Math. 3(2), 216–240 (1990)

    Article  MathSciNet  Google Scholar 

  15. R.N. Garifullin, R.I. Yamilov, D. Levi, Classification of five-point differential-difference equations. J. Phys. A Math. Theor. 50, 125,201 (27pp) (2017)

    Google Scholar 

  16. R.N. Garifullin, R.I. Yamilov, D. Levi, Classification of five-point differential-difference equations II. J. Phys. A Math. Theor. 51, 065,204 (16pp) (2018)

    Google Scholar 

  17. B. Grammaticos, R.G. Halburd, A. Ramani, C.M. Viallet, How to detect the integrability of discrete systems. J. Phys. A Math. Theor. 42, 454,002 (41 pp) (2009). Newton Institute Preprint NI09060-DIS

    Google Scholar 

  18. G. Gubbiotti, Integrability of difference equations through algebraic entropy and generalized symmetries, in Symmetries and Integrability of Difference Equations: Lecture Notes of the Abecederian School of SIDE 12, Montreal 2016, ed. by D. Levi, R. Verge-Rebelo, P. Winternitz. CRM Series in Mathematical Physics, chap. 3 (Springer International Publishing, Berlin, 2017), pp. 75–152

    Google Scholar 

  19. G. Gubbiotti, Algebraic entropy of a class of five-point differential-difference equations. Symmetry 11, 432 (24pp) (2019)

    Google Scholar 

  20. G. Gubbiotti, Stationary reductions of five-point differential-difference equations and their integrability properties (2020). In preparation

    Google Scholar 

  21. G. Gubbiotti, N. Joshi, D.T. Tran, C.M. Viallet, Complexity and integrability in 4D bi-rational maps with two invariants (2020). Accepted for publication in Springer’s PROMS series: “Asymptotic, Algebraic and Geometric Aspects of Integrable Systems”

    Google Scholar 

  22. G. Gubbiotti, N. Joshi, D.T. Tran, C.M. Viallet, Bi-rational maps in four dimensions with two invariants. J. Phys. A: Math. Theor 53, 115201 (24pp) (2020)

    Google Scholar 

  23. A. Hagar, Discrete or Continuous? The Quest for Fundamental Length in Modern Physics (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  24. J. Hietarinta, N. Joshi, F. Nijhoff, Discrete Systems and Integrability. Cambridge Texts in Applied Mathematics (Cambridge University Press, 2016)

    Google Scholar 

  25. J. Hietarinta, C.M. Viallet, Searching for integrable lattice maps using factorization. J. Phys. A Math. Theor. 40, 12,629–12,643 (2007)

    Article  MathSciNet  Google Scholar 

  26. N. Joshi, C.M. Viallet, Rational maps with invariant surfaces. J. Int. Syst. 3, xyy017 (14pp) (2018)

    Google Scholar 

  27. S.K. Lando, Lectures on Generating Functions (American Mathematical Society, 2003)

    Google Scholar 

  28. S. Maeda, Completely integrable symplectic mapping. Proc. Jpn. Acad. A Math. Sci. 63, 198–200 (1987)

    MathSciNet  MATH  Google Scholar 

  29. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, 3rd edn. (Cambridge University Press, Cambridge, 2007). The Art of Scientific Computing

    Google Scholar 

  30. G.R.W. Quispel, J.A.G. Roberts, C.J. Thompson, Integrable mappings and soliton equations. Phys. Lett. A 126, 419 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  31. G.R.W. Quispel, J.A.G. Roberts, C.J. Thompson, Integrable mappings and soliton equations II. Physica D 34(1), 183–192 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  32. G.W.R. Quispel, H.R. Capel, J.A.G. Roberts, Duality for discrete integrable systems. J. Phys. A Math. Gen. 38(18), 3965 (2005)

    Google Scholar 

  33. J.A.G. Roberts, D. Jogia, Birational maps that send biquadratic curves to biquadratic curves. J. Phys. A Math. Theor. 48, 08FT02 (2015)

    Google Scholar 

  34. T. Takenawa, Algebraic entropy and the space of initial values for discrete dynamical systems. J. Phys. A 34, 10,533 (2001)

    Article  MathSciNet  Google Scholar 

  35. D.T. Tran, P.H. van der Kamp, G.R.W. Quispel, Closed-form expressions for integrals of traveling wave reductions of integrable lattice equations. J. Phys. A 42, 225,201, (20pp) (2009)

    Google Scholar 

  36. D.T. Tran, P.H. van der Kamp, G.R.W. Quispel, Sufficient number of integrals for the pth-order Lyness equation. J. Phys. A 43, 302,001, (11pp) (2010)

    Google Scholar 

  37. D.T. Tran, P.H. van der Kamp, G.R.W. Quispel, Involutivity of integrals of sine-Gordon, modified KdV and potential KdV maps. J. Phys. A 44, 295,206, (13pp) (2011)

    Google Scholar 

  38. D.T. Tran, P.H. van der Kamp, G.R.W. Quispel, Poisson brackets of mappings obtained as (q, −p) reductions of lattice equations. Regul. Chaotic Dyn. 21(6), 682–696 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Tsujimoto, R. Hirota, Pfaffian representation of solutions to the discrete BKP hierarchy in bilinear form. J. Phys. Soc. Jpn. 65, 2797–2806 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. P. van der Kamp, G.W.R. Quispel, The staircase method: integrals for periodic reductions of integrable lattice equations. J. Phys. A Math. Theor. 43, 465,207 (2010)

    Article  MathSciNet  Google Scholar 

  41. A.P. Veselov, Integrable maps. Russ. Math. Surv. 46, 1–51 (1991)

    Article  Google Scholar 

  42. A.P. Veselov, Growth and integrability in the dynamics of mappings. Commun. Math. Phys. 145, 181–193 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  43. C.M. Viallet, On the algebraic structure of rational discrete dynamical systems. J. Phys. A 48(16), 16FT01 (2015)

    Google Scholar 

  44. C.M. Viallet, B. Grammaticos, A. Ramani, On the integrability of correspondences associated to integral curves. Phys. Lett. A 322, 186–93 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Dr. D. T. Tran for the helpful discussions during the preparation of this paper.

GG is supported through Prof. N. Joshi’s Australian Laureate Fellowship #FL120100094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Gubbiotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gubbiotti, G. (2021). A Novel Integrable Fourth-Order Difference Equation Admitting Three Invariants. In: Paranjape, M.B., MacKenzie, R., Thomova, Z., Winternitz, P., Witczak-Krempa, W. (eds) Quantum Theory and Symmetries. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-55777-5_6

Download citation

Publish with us

Policies and ethics