Skip to main content

Household Air Pollution from Cookstoves: Impacts on Health and Climate

  • Chapter
  • First Online:
  • 1418 Accesses

Part of the book series: Respiratory Medicine ((RM))

Abstract

Household air pollution (HAP) is an exposure of poverty. The success in having a sustainable reduction in HAP requires an understanding of the traditions and culture of the family as well as the causes of poverty that place the family at the bottom of the energy ladder. An integrated approach to reducing HAP with efforts also aimed at correcting other poverty-related issues is challenging but offers the hope for addressing root causes of poverty in a community setting that provides a more comprehensive and sustainable approach to improving health, the environment, and, ultimately, the global climate. One can argue that we already have decades of information on the health risks from outdoor air pollution or the products of incomplete combustion from tobacco smoke, and so further research is not needed. However, there is a compelling need to know how clean a stove or fuel must be to significantly reduce health risks so that with proper use, major implementation of such new technology may reasonably provide the intended benefits for improved health, the regional environment, and the global climate. Addressing the key scientific gaps related to HAP and its reduction will provide critical new information that can inform large-scale implementation programs to provide sufficiently clean household air for families living in poverty such that diseases are prevented, a healthier lifestyle is promoted, and a reduction in global warming trends buys more time for a planet in peril from climate change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Martin WJ II, Glass RI, Balbus JM, Collins FS. A major environmental cause of death. Science. 2011;334(6053):180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S, Pruss-Ustun A, Lahiff M, Rehfuess EA, Mishra V, Smith KR. Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environ Health Perspect. 2013;121:784–90.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 29 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388:1659–724.

    Article  Google Scholar 

  4. The International Bank for Reconstruction and Development. Household cookstoves, environment, health and climate change: a new look at an old problem; 2011. http://documents.worldbank.org/curated/en/732691468177236006/pdf/632170WP0House00Box0361508B0PUBLIC0.pdf

  5. US Climate Change Science Program. Climate projections based on emissions scenarios for long-lived and short-lived radiatively active gases and aerosols; 2008. http://www.climatescience.gov/Library/sap/sap3-2/final-report/#finalreport

  6. Lacey FG, Henze DK, Lee CJ, van Donkelaar A, Martin RV. Transient climate and ambient health impacts due to national solid fuel cookstove emissions. PNAS. 2017;6:1269–74. https://doi.org/10.1073/pnas.

    Article  Google Scholar 

  7. Calvin WH. The ascent of mind: ice age climates and the evolution of intelligence. New York: Bantam Books; 1990.

    Google Scholar 

  8. Patrick E. Sexual violence and firewood collection in Darfur. Forced Migr Rev. 2007;27:40–1. https://www.fmreview.org/sites/fmr/files/FMRdownloads/en/sexualviolence/patrick.pdf. Accessed 7 June 2019.

    Google Scholar 

  9. Damberger D. TED lecture: what happens when an NGO admits failure?; 2011. http://www.ted.com/talks/david_damberger_what_happens_when_an_ngo_admits_failure.html

  10. Chen M, Bonner C, Carre F. Organizing informal workers: benefits, challenges and successes. UNDP Human Development Report Office; 2015. http://hdr.undp.org/en/content/organizing-informal-workers-benefits-challenges-and-successes

  11. Winiarski L, Aprovecho Research Center, Partnership for Clean Indoor Air (PCIA), Shell Foundation. Design principles for wood burning cook stoves; 2005. aprovecho.org/?paybox_id=77

  12. Ramakrishna J, Durgaprasad MB, Smith KR. Cooking in India: the impact of improved stoves on indoor air quality. Environ Int. 1989;15:341–52. https://doi.org/10.1016/0160-4120(89)90047-0.

    Article  CAS  Google Scholar 

  13. Sinton JE, Smith KR, Peabody JW, Yaping L, Xiliang Z, Edwards R. An assessment of programs to promote improved household stoves in China. Energy Sustain Dev. 2004;8:33–52. https://doi.org/10.1016/S0973-0826(08)60465-2.

    Article  Google Scholar 

  14. Venkataraman C, Sagar AD, Habib G, Lam N, Smith KR. The Indian national initiative for advanced biomass cookstoves: the benefits of clean combustion. Energy Sustain Dev. 2010;14:63–72. https://doi.org/10.1016/j.esd.2010.04.005.

    Article  CAS  Google Scholar 

  15. MacCarty N, Still D, Ogle D. Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain Dev. 2010;14:161–71. https://doi.org/10.1016/j.esd.2010.06.002.

    Article  Google Scholar 

  16. US Environmental Protection Agency. PM2.5 NAAQS implementation; 2008. http://www.epa.gov/ttnnaaqs/pm/pm25_index.html. Accessed 27 Jan 2012.

  17. Ostro B, Lipsett M, Reynolds P, Goldberg D, Hertz A, Garcia C, et al. Long-term exposure to constituents of fine particulate air pollution and mortality: results from the California teachers study. Environ Health Perspect. 2010;118:363–9. https://doi.org/10.1289/ehp.0901181.

    Article  CAS  PubMed  Google Scholar 

  18. Kituyi E, Marufu L, Wandiga SO, Jumba IO, Andreae MO, Helas G. Carbon monoxide and nitric oxide from biofuel fires in Kenya. Energy Convers Manag. 2001;42:1517–42. https://doi.org/10.1016/S0196-8904(00)00158-8.

    Article  CAS  Google Scholar 

  19. Pillarisetti A, Vaswani M, Jack D, Balakrishnan K, Bates MN, Arora NK, Smith KR. Patterns of stove usage after introduction of an advanced cookstove: the long-term application of household sensors. Environ Sci Technol. 2014;48:14525–33. https://doi.org/10.1021/es504624c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Better burning, better breathing: cleaner stoves. Science and research at the U.S. Environmental Protection Agency EPA progress report 2010; 2010. https://www.epa.gov/sites/production/files/2013-12/documents/annual-report-2010.pdf. Accessed 3 June 2019.

  21. Clean Cooking Alliance. https://www.cleancookingalliance.org/about/our-mission/index.html. Accessed 7 June 2019.

  22. Clean Cooking Alliance International Testing Centers. https://www.cleancookingalliance.org/technology-and-fuels/testing/centers.html. Accessed 7 June 2019.

  23. Jetter JJ, Kariher P. Solid-fuel household cook stoves: characterization of performance and emissions. Biomass Bioenergy. 2009;33(2):294–305. https://doi.org/10.1016/j.biombioe.2008.05.014.

    Article  CAS  Google Scholar 

  24. Berkeley Air Monitoring Group. Stove performance inventory report; 2012. http://berkeleyair.com/wp-content/publications/SPT_Inventory_Report_v3_0.pdf. Accessed 7 June 2019.

  25. International Organization for Standardization. Clean cookstoves and clean cooking solutions – harmonized laboratory test protocols – part 3: voluntary performance targets for cookstoves based on laboratory testing. https://www.iso.org/standard/73935.html. Accessed 7 June 2019.

  26. Jetter J, Zhao Y, Smith KR, Khan B, Yelverton T, DeCarlo P, Hayes MD. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ Sci Technol. 2012;46:10827–34. https://doi.org/10.1021/es301693f.

    Article  CAS  PubMed  Google Scholar 

  27. Landringan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N, et al. The Lancet commission on pollution and health. Lancet. 2018;391:462–512.

    Article  Google Scholar 

  28. Balakrishnan K, Sambandam S, Ramaswamy P, Mehta S, Smith KR. Exposure assessment for respirable particulates associated with household fuel use in rural districts of Andhra Pradesh, India. J Expo Anal Environ Epidemiol. 2004;14(Suppl 1):S14–25. https://doi.org/10.1038/sj.jea.7500354.

    Article  CAS  PubMed  Google Scholar 

  29. The Health Effects Institute. Outdoor air pollution and health in the developing countries of Asia: a comprehensive review. Special report 18; 2010. https://www.healtheffects.org/system/files/SR18AsianLitReview.pdf. Accessed 7 June 2019.

  30. World Health Organization. Burden of disease from the joint effects of household and ambient air pollution for 2012; 2012. https://www.who.int/phe/health_topics/outdoorair/databases/AP_jointeffect_BoD_results_March2014.pdf

  31. Hosgood HD 3rd, Boffetta P, Greenland S, Lee YC, McLaughlin J, Seow A, et al. In-home coal and wood use and lung cancer risk: a pooled analysis of the international lung cancer consortium. Environ Health Perspect. 2010;118(12):1743–7. https://doi.org/10.1289/ehp.1002217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin WJ, Glass RI, Araj H, Balbus J, Collins FS, Curtis S, et al. Household air pollution in low- and middle-income countries: health risks and research priorities. PLoS. 2013;10:e1001455. https://doi.org/10.1371/journal.pmed.1001455.

    Article  Google Scholar 

  33. Peck MD, Kruger GE, van der Merwe AE, Godakumbura W, Ahuja RB. Burns and fires from non-electric domestic appliances in low- and middle-income countries. Part I. The scope of the problem. Burns. 2008;34(3):303–11. https://doi.org/10.1016/j.burns.2007.08.014.

    Article  PubMed  Google Scholar 

  34. Pinkerton KE, Harbaugh M, Han MK, Jourdan Le Saux C, Van Winkle LS, Martin WJ 2nd, et al. Women and lung disease. Sex differences and global health disparities. Am J Respir Crit Care Med. 2015;192:11–6. https://doi.org/10.1164/rccm.201409-1740PP.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aryal S, Diaz-Guzman E, Mannino DM. Influence of sex on chronic obstructive pulmonary disease risk and treatment outcomes. Int J COPD. 2014;9:1145–54. https://doi.org/10.2147/COPD.S54476.

    Article  Google Scholar 

  36. Gan WQ, Paul Man SF, Postma DS, Camp P, Sin DD. Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Res. 2006;7:52. https://doi.org/10.1186/1465-9921-7-52.

    Article  PubMed  PubMed Central  Google Scholar 

  37. American Lung Association. Taking her breath away: the rise of COPD in women; 2013. https://www.lung.org/assets/documents/research/rise-of-copd-in-women-full.pdf. Accessed 5 June 2019.

  38. Wylie BJ, Matechi E, Kishashu Y, Fawzi W, Premji Z, Coull BA, et al. Placental pathology associated with household air pollution in a cohort of pregnant women from Dar es Salaam. Tanzania Environ Health Perspect. 2017;125:134–40. https://doi.org/10.1289/EHP256.

    Article  CAS  PubMed  Google Scholar 

  39. Lee AG, Kaali S, Quinn A, Delimini R, Burkart K, Opoku-Mensah J, et al. Prenatal household air pollution is associated with impaired infant lung function with sex-specific effects. Evidence from GRAPHS, a cluster randomized cookstove intervention trial. Am J Respir Crit Care Med. 2019;199:738–46. https://doi.org/10.1164/rccm.201804-0694OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barker DJP. The developmental origins of adult disease. J Am Coll Nutr. 2004;6:588S–95S.

    Article  Google Scholar 

  41. Hanson M, Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol. 2011;106(1):272–80. https://doi.org/10.1016/j.pbiomolbio.2010.12.008.

    Article  PubMed  Google Scholar 

  42. Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180:462–7. https://doi.org/10.1164/rccm.200901-0135OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carey MA, Card JW, Voltz JW, Arbes SJ Jr, Germolec DR, Korach KS, Zeldin DC. It’s all about sex: male-female differences in lung development and disease. Trends Endocrinol Metab. 2007;18:308–13. https://doi.org/10.1016/j.tem.2007.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gold DR, Wang X, Wypij D, Speizer FE, Ware JH, Dockery DW. Effects of cigarette smoking on lung function in adolescent boys and girls. N Engl J Med. 1996;335:931–7. https://doi.org/10.1056/NEJM199609263351304.

    Article  CAS  PubMed  Google Scholar 

  45. Bell ML, Davis DL. Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environ Health Perspect. 2001;109(SUPPL. 3):389–94. https://doi.org/10.1289/ehp.01109s3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharma S, Nunez L, Ramanathan V. Atmospheric brown clouds. Oxford research encyclopedia of environmental science; 2016. https://doi.org/10.1093/acrefore/9780199389414.013.47.

  47. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525(7569):367.

    Article  CAS  PubMed  Google Scholar 

  48. Gustafsson Ö, Kruså M, Zencak Z, Sheesley RJ, Granat L, Engström E, Praveen PS, Rao PS, Leck C, Rodhe H. Brown clouds over South Asia: biomass or fossil fuel combustion? Science. 2009;323(5913):495–8. https://doi.org/10.1126/science.1164857.

    Article  CAS  PubMed  Google Scholar 

  49. Rehman IH, Ahmed T, Praveen PS, Kar A, Ramanathan V. Black carbon emissions from biomass and fossil fuels in rural India. Atmos Chem Phys. 2011;11(14):7289–99. https://doi.org/10.5194/acpd-11-10845-2011.

    Article  CAS  Google Scholar 

  50. Ramanathan V, Feng Y. On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc Natl Acad Sci U S A. 2008;105:14245–50. https://doi.org/10.1073/pnas.0803838105.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xu Y, Ramanathan V, Victor DG. Global warming will happen faster than we think. Nature. 2018;564:30–2. https://doi.org/10.1038/d41586-018-07586-5.

    Article  CAS  PubMed  Google Scholar 

  52. United Nations Environment Programme. Integrated assessment of black carbon and tropospheric ozone: summary for decision makers; 2011. https://www.ccacoalition.org/en/resources/integrated-assessment-black-carbon-and-tropospheric-ozone. Accessed 7 June 2019.

  53. Ramanathan V, Xu Y. The Copenhagen accord for limiting global warming: criteria, constraints, and available avenues. Proc Natl Acad Sci U S A. 2010;107:8055–62. https://doi.org/10.1073/pnas.1002293107.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shindell D, Kuylenstierna JCI, Vignati E, van Dingenen R, Amann M, Klimont Z, et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science. 2012;335:183–9. https://doi.org/10.1126/science.1210026.

    Article  CAS  PubMed  Google Scholar 

  55. Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nat Geosci. 2008;1(4):221–7.

    Article  CAS  Google Scholar 

  56. Pontifical Academy of Sciences. Fate of mountain glaciers in the anthropocene. A report by the working group commissioned by the Pontifical Academy of Sciences; 2011. http://www.casinapioiv.va/content/dam/accademia/pdf/glaciers.pdf. Accessed 7 June 2019.

  57. Smith KR, McCracken JP, Weber MW, Hubbard A, Jenny A, Thompson LM, et al. Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): a randomised controlled trial. Lancet. 2011;378:1717–26. https://doi.org/10.1016/S0140-6736(11)60921-5.

    Article  PubMed  Google Scholar 

  58. Mortimer K, Ndamala CB, Naunje AW, Malava J, Katundu C, Weston W, et al. A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the cooking and pneumonia study): a cluster randomised controlled trial. 2017;389:P167–75. https://doi.org/10.1016/S0140-6736(16)32507-7.

  59. Tielsch JM, Katz J, Khatry SK, Shrestha L, Breysse P, Zeger S, et al. Effect of an improved biomass stove on acute lower respiratory infections in young children in rural Nepal: a cluster-randomised, step-wedge trial. Lancet Glob Health. 2016;4(Special Issue):S19. https://doi.org/10.1016/S2214-109X(16)30024-9.

    Article  Google Scholar 

  60. Balakrishnan K, Sambandam S, Ghosh S, Mukhopadhyay K, Vaswani M, Arora NK, et al. Household air pollution exposures of pregnant women receiving advanced combustion cookstoves in India: implications for intervention. Ann Glob Health. 2015;81:375–85. https://doi.org/10.1016/j.aogh.2015.08.009.

    Article  PubMed  Google Scholar 

  61. Gould CF, Schlesinger S, Toasa AO, Thurber M, Waters WF, Graham JP, Jack DW. Government policy, clean fuel access, and persistent fuel stacking in Ecuador. Energy Sustain Dev. 2018;46:11–122. https://doi.org/10.1016/j.esd.2018.05.009.

    Article  Google Scholar 

  62. Serrano-Medrano M, Garcia-Bustamante C, Berrueta VM, Martinez-Bravo R, Ruiz-Garcia VM, Ghilardi A, Masera O. Promoting LPG, clean woodburning cookstoves or both? Climate change mitigation implications of integrated household energy transition scenarios in rural Mexico. Environ Res Lett. 2018;13 https://doi.org/10.1088/1748-9326/aad5b8.

  63. Pope D, Bruce N, Dherani M, Jagoe K, Rehfuess E. Real-life effectiveness of ‘improved’ stoves and clean fuels in reducing PM2.5 and CO: systematic review and meta-analysis. Environ Int. 2017;101:7–18. https://doi.org/10.1016/j.envint.2017.01.012.

    Article  CAS  PubMed  Google Scholar 

  64. Bruce N, Pope D, Rehfuess E, Balakrishnan K, Adair-Rohani H, Dora C. WHO indoor air quality guidelines on household fuel combustion: strategy implications of new evidence on interventions and exposure-risk functions. Atmos Environ. 2015;106:451–7. https://doi.org/10.1016/j.atmosenv.2014.08.064.

    Article  CAS  Google Scholar 

  65. Jagger P, Das I. Implementation and scale-up of a biomass pellet and improved cookstove enterprise in Rwanda. Energy Sustain Dev. 2018;46:32–41. https://doi.org/10.1016/j.esd.2018.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Champion WM, Grieshop AP. Pellet-fed gasifier stoves approach gas-stove like performance during in-home use in Rwanda. Environ Sci Technol. 2019; https://doi.org/10.1021/acs.est.9b00009.

  67. Smith KR, Sagar A. Making the clean available: escaping India’s chulha trap. Energy Policy. 2014;75:410–4. https://doi.org/10.1016/j.enpol.2014.09.024.

    Article  Google Scholar 

  68. Smith KR, Sagar AD. LPG subsidy: analysing the ‘give it up’ scheme. The Economic Times; 2016. https://economictimes.indiatimes.com/blogs/et-commentary/lpg-subsidy-analysing-the-give-it-up-scheme/. Accessed 7 June 2019.

  69. National Institutes of Health. Household air pollution investigation network (HAPIN). https://commonfund.nih.gov/globalhealth/hapinresources. Accessed 7 June 2019.

  70. Ramanathan V, Balakrishnan, K. Project surya: reduction of air pollution and global warming by cooking with renewable sources – a controlled and practical experiment in rural India: a white paper; 2007. http://www.indiaenvironmentportal.org.in/files/Surya-WhitePaper.pdf. Accessed 7 June 2019.

  71. Flanner MG, Zender CS, Hess PG, Mahowald NM, Painter TH, Ramanathan V, Rasch PJ. Springtime warming and reduced snow cover from carbonaceous particles. Atmos Chem Phy Discuss. 2008;8:19819–59. https://doi.org/10.5194/acp-9-2481-2009.

    Article  Google Scholar 

  72. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, et al. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci U S A. 2005;102:5326–33. https://doi.org/10.1073/pnas.0500656102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meehl GA, Arblaster JM, Collins WD. Effects of black carbon aerosols on the Indian monsoon. J Clim. 2008;21:2869–82. https://doi.org/10.1175/2007JCLI1777.1.

    Article  Google Scholar 

  74. Auffhammer M, Ramanathan V, Vincent JR. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proc Natl Acad Sci U S A. 2006;103:19668–72. https://doi.org/10.1073/pnas.0609584104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramanathan V, Ramanathan, N. An unprecedented opportunity. Our Planet. 2011:28–29. http://www.igsd.org/documents/Ramanathan.pdf. Accessed 7 June 2019.

  76. Kar A, Siva P, Suresh R, Rehman IH, Singh L, Singh VK, et al. Real-time assessment of black carbon pollution in Indian households due to traditional and improved biomass cook stoves. Environ Sci Technol. 2012;46:2993–3000. https://doi.org/10.1021/es203388g.

    Article  CAS  PubMed  Google Scholar 

  77. Graham EA, Patange O, Lukac M, Singh L, Kar A, Rehman IH, Ramanathan N. Laboratory demonstration and field verification of a wireless cookstove sensing system (WiCS) for determining cooking duration and fuel consumption. Energy Sustain Dev. 2014;23:59–67. https://doi.org/10.1016/j.esd.2014.08.001.

    Article  Google Scholar 

  78. Ramanathan T, Ramanathan N, Mohanty J, Rehman IH, Graham E, Ramanathan V. Wireless sensors linked to climate financing for globally affordable clean cooking. Nat Clim Chang. 2017;7:44–7. https://doi.org/10.1038/nclimate3141.

    Article  Google Scholar 

  79. Ramanathan N, Lukac M, Ahmed T, Kar A, Praveen PS, Honles T, et al. A cellphone based system for large-scale monitoring of black carbon. Atmos Environ. 2011;45:4481–7. https://doi.org/10.1016/j.atmosenv.2011.05.030.

    Article  CAS  Google Scholar 

  80. Nexleaf Analytics and Tata Trusts. Beyond monitoring and evaluation: tracking improved cookstove adoption continuously and over time to achieve lasting success; 2018. https://nexleaf.org/reports/joint-learning-series/beyond-monitoring-and-evaluation.pdf. Accessed 7 June 2019.

  81. Praveen PS, Ahmed T, Kar A, Rehman IH, Ramanathan V. Link between local scale BC emissions and large scale atmospheric solar absorption. Atmos Chem Phys. 2011;11:21319–61. https://doi.org/10.5194/acp-12-1173-2012.

    Article  CAS  Google Scholar 

  82. Ramanathan V. Greenhouse effect due to chlorofluorocarbons: climatic implications. Science. 1975;190:50–2. https://doi.org/10.1126/science.190.4209.50.

    Article  CAS  Google Scholar 

  83. Anenburg SC, Balakrishnan K, Jetter J, Masera O, Mehta S, Moss J, Ramanthan V. Cleaner cooking solutions to achieve health, climate, and economic cobenefits. Environ Sci Technol. 2013;47:3944–52. https://doi.org/10.1021/es304942e.

    Article  CAS  Google Scholar 

  84. Bodereau PN. Peruvian highlands, fume-free. Science. 2011;334:157. https://doi.org/10.1126/science.1212526.

    Article  CAS  PubMed  Google Scholar 

  85. Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287:1132–41. https://doi.org/10.1001/jama.287.9.1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. U.S. Department of Health and Human Services. How tobacco smoke causes disease. The biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. U.S. Department of Health and Human Services CfDCaP, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, editors. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2010.

    Google Scholar 

Download references

Acknowledgments

We would like to thank James Jetter of the U.S. EPA of the National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Stove Testing Center, Research Triangle Park, North Carolina, USA for his helpful review and comments of the chapter as well as his contribution of the photograph in Fig.17.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Martin II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin, W.J., Ramanathan, T., Ramanathan, V. (2021). Household Air Pollution from Cookstoves: Impacts on Health and Climate. In: Pinkerton, K.E., Rom, W.N. (eds) Climate Change and Global Public Health. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-54746-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54746-2_17

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-54745-5

  • Online ISBN: 978-3-030-54746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics