Skip to main content

Applications of Antibodies in Therapy, Diagnosis, and Science

  • Chapter
  • First Online:
Introduction to Antibody Engineering

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1969 Accesses

What You Will Learn in This Chapter

This chapter will give an overview on the plethora of applications of antibodies and antibody-like molecules in therapy, diagnosis, and research. In the first section of the chapter, you will learn about the indications, molecular targets, and mode of actions of some selected approved therapeutic antibodies. The second section of this chapter will deal about the utilization of antibodies for disease diagnostics in various indications like infectious diseases, especially regarding tuberculosis and HIV, and in cancer diagnosis with reference to approved and commercially available test kits. The last section of the chapter describes important antibody-based technologies and assay formats like flow cytometry, immunohistochemistry, and ELISA that are commonly deployed in biomedical research. Due to their outstanding specificities, many basic and routine laboratory applications are based on the interactions of antibodies with their respective antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Norman DJ. Mechanisms of action and overview of OKT3. Ther Drug Monit. 1995;17(6):615–20.

    Article  CAS  PubMed  Google Scholar 

  2. Singh S, Kumar NK, Dwiwedi P, Charan J, Kaur R, Sidhu P, et al. Monoclonal antibodies: a review. Curr Clin Pharmacol. 2018;13(2):85–99.

    Article  PubMed  CAS  Google Scholar 

  3. Liu JK. The history of monoclonal antibody development – progress, remaining challenges and future innovations. Ann Med Surg (Lond). 2014;3(4):113–6.

    Article  Google Scholar 

  4. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–74.

    Article  CAS  PubMed  Google Scholar 

  5. marketwatch.com. Global Monoclonal Antibody Therapeutics Market to Surpass US$ 174. 2 Billion by 2026 [Press release]. www.marketwatch.com2019. Available from: https://www.marketwatch.com/press-release/global-monoclonal-antibody-therapeutics-market-to-surpass-us-174-2-billion-by-2026-2019-01-18

  6. Gasser M, Waaga-Gasser AM. Therapeutic antibodies in cancer therapy. Adv Exp Med Biol. 2016;917:95–120.

    Article  CAS  PubMed  Google Scholar 

  7. Kalofonos HP, Grivas PD. Monoclonal antibodies in the management of solid tumors. Curr Top Med Chem. 2006;6(16):1687–705.

    Article  CAS  PubMed  Google Scholar 

  8. Thienelt CD, Bunn PA Jr, Hanna N, Rosenberg A, Needle MN, Long ME, et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J Clin Oncol. 2005;23(34):8786–93.

    Article  PubMed  Google Scholar 

  9. Modi S, D’Andrea G, Norton L, Yao TJ, Caravelli J, Rosen PP, et al. A phase I study of cetuximab/paclitaxel in patients with advanced-stage breast cancer. Clin Breast Cancer. 2006;7(3):270–7.

    Article  CAS  PubMed  Google Scholar 

  10. Hofheinz RD, Horisberger K, Woernle C, Wenz F, Kraus-Tiefenbacher U, Kahler G, et al. Phase I trial of cetuximab in combination with capecitabine, weekly irinotecan, and radiotherapy as neoadjuvant therapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2006;66(5):1384–90.

    Article  CAS  PubMed  Google Scholar 

  11. Belani CP, Schreeder MT, Steis RG, Guidice RA, Marsland TA, Butler EH, et al. Cetuximab in combination with carboplatin and docetaxel for patients with metastatic or advanced-stage nonsmall cell lung cancer: a multicenter phase 2 study. Cancer. 2008;113(9):2512–7.

    Article  CAS  PubMed  Google Scholar 

  12. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78.

    Article  CAS  PubMed  Google Scholar 

  13. Bourhis J, Rivera F, Mesia R, Awada A, Geoffrois L, Borel C, et al. Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2006;24(18):2866–72.

    Article  CAS  PubMed  Google Scholar 

  14. Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA. Eastern cooperative oncology G. phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an eastern cooperative oncology group study. J Clin Oncol. 2005;23(34):8646–54.

    Article  PubMed  Google Scholar 

  15. Curran D, Giralt J, Harari PM, Ang KK, Cohen RB, Kies MS, et al. Quality of life in head and neck cancer patients after treatment with high-dose radiotherapy alone or in combination with cetuximab. J Clin Oncol. 2007;25(16):2191–7.

    Article  CAS  PubMed  Google Scholar 

  16. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.

    Article  PubMed  CAS  Google Scholar 

  17. Jonker DJ, O’Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357(20):2040–8.

    Article  CAS  PubMed  Google Scholar 

  18. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  CAS  PubMed  Google Scholar 

  19. Lenz HJ, Van Cutsem E, Khambata-Ford S, Mayer RJ, Gold P, Stella P, et al. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol. 2006;24(30):4914–21.

    Article  CAS  PubMed  Google Scholar 

  20. Saltz LB, Lenz HJ, Kindler HL, Hochster HS, Wadler S, Hoff PM, et al. Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study. J Clin Oncol. 2007;25(29):4557–61.

    Article  CAS  PubMed  Google Scholar 

  21. Tabernero J, Van Cutsem E, Diaz-Rubio E, Cervantes A, Humblet Y, Andre T, et al. Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2007;25(33):5225–32.

    Article  CAS  PubMed  Google Scholar 

  22. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  CAS  PubMed  Google Scholar 

  23. Bange J, Zwick E, Ullrich A. Molecular targets for breast cancer therapy and prevention. Nat Med. 2001;7(5):548–52.

    Article  CAS  PubMed  Google Scholar 

  24. Arnould L, Arveux P, Couturier J, Gelly-Marty M, Loustalot C, Ettore F, et al. Pathologic complete response to trastuzumab-based neoadjuvant therapy is related to the level of HER-2 amplification. Clin Cancer Res. 2007;13(21):6404–9.

    Article  CAS  PubMed  Google Scholar 

  25. Baselga J, Carbonell X, Castaneda-Soto NJ, Clemens M, Green M, Harvey V, et al. Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol. 2005;23(10):2162–71.

    Article  CAS  PubMed  Google Scholar 

  26. Belkacemi Y, Gligorov J, Ozsahin M, Marsiglia H, De Lafontan B, Laharie-Mineur H, et al. Concurrent trastuzumab with adjuvant radiotherapy in HER2-positive breast cancer patients: acute toxicity analyses from the French multicentric study. Ann Oncol. 2008;19(6):1110–6.

    Article  CAS  PubMed  Google Scholar 

  27. Burstein HJ, Keshaviah A, Baron AD, Hart RD, Lambert-Falls R, Marcom PK, et al. Trastuzumab plus vinorelbine or taxane chemotherapy for HER2-overexpressing metastatic breast cancer: the trastuzumab and vinorelbine or taxane study. Cancer. 2007;110(5):965–72.

    Article  CAS  PubMed  Google Scholar 

  28. Hussain MH, MacVicar GR, Petrylak DP, Dunn RL, Vaishampayan U, Lara PN Jr, et al. Trastuzumab , paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. J Clin Oncol. 2007;25(16):2218–24.

    Article  CAS  PubMed  Google Scholar 

  29. Sato N, Sano M, Tabei T, Asaga T, Ando J, Fujii H, et al. Combination docetaxel and trastuzumab treatment for patients with HER-2-overexpressing metastatic breast cancer: a multicenter, phase-II study. Breast Cancer. 2006;13(2):166–71.

    Article  PubMed  Google Scholar 

  30. Schaller G, Fuchs I, Gonsch T, Weber J, Kleine-Tebbe A, Klare P, et al. Phase II study of capecitabine plus trastuzumab in human epidermal growth factor receptor 2 overexpressing metastatic breast cancer pretreated with anthracyclines or taxanes. J Clin Oncol. 2007;25(22):3246–50.

    Article  CAS  PubMed  Google Scholar 

  31. Suter TM, Procter M, van Veldhuisen DJ, Muscholl M, Bergh J, Carlomagno C, et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol. 2007;25(25):3859–65.

    Article  CAS  PubMed  Google Scholar 

  32. Viani GA, Afonso SL, Stefano EJ, De Fendi LI, Soares FV. Adjuvant trastuzumab in the treatment of her-2-positive early breast cancer: a meta-analysis of published randomized trials. BMC Cancer. 2007;7:153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    Article  CAS  PubMed  Google Scholar 

  34. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90.

    Article  CAS  PubMed  Google Scholar 

  35. Seyfizadeh N, Seyfizadeh N, Hasenkamp J, Huerta-Yepez S. A molecular perspective on rituximab: a monoclonal antibody for B cell non Hodgkin lymphoma and other affections. Crit Rev Oncol Hematol. 2016;97:275–90.

    Article  PubMed  Google Scholar 

  36. Byrd JC, Peterson BL, Morrison VA, Park K, Jacobson R, Hoke E, et al. Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: results from cancer and leukemia group B 9712 (CALGB 9712). Blood. 2003;101(1):6–14.

    Article  CAS  PubMed  Google Scholar 

  37. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  38. Ghielmini M, Schmitz SF, Cogliatti SB, Pichert G, Hummerjohann J, Waltzer U, et al. Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly x 4 schedule. Blood. 2004;103(12):4416–23.

    Article  CAS  PubMed  Google Scholar 

  39. Marcus R, Imrie K, Belch A, Cunningham D, Flores E, Catalano J, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood. 2005;105(4):1417–23.

    Article  CAS  PubMed  Google Scholar 

  40. Gravbrot N, Gilbert-Gard K, Mehta P, Ghotmi Y, Banerjee M, Mazis C, et al. Therapeutic monoclonal antibodies targeting immune checkpoints for the treatment of solid tumors. Antibodies (Basel). 2019;8(4).

    Google Scholar 

  41. Weber J. Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist. 2007;12(7):864–72.

    Article  CAS  PubMed  Google Scholar 

  42. Weber JS, O’Day S, Urba W, Powderly J, Nichol G, Yellin M, et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol. 2008;26(36):5950–6.

    Article  CAS  PubMed  Google Scholar 

  43. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang N, Tu J, Wang X, Chu Q. Programmed cell death-1/programmed cell death ligand-1 checkpoint inhibitors: differences in mechanism of action. Immunotherapy. 2019;11(5):429–41.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22.

    Article  CAS  PubMed  Google Scholar 

  46. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  PubMed  CAS  Google Scholar 

  50. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Antonia SJ, Lopez-Martin JA, Bendell J, Ott PA, Taylor M, Eder JP, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–95.

    Article  CAS  PubMed  Google Scholar 

  55. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17.

    Article  CAS  PubMed  Google Scholar 

  56. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  58. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant Pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378(19):1789–801.

    Article  CAS  PubMed  Google Scholar 

  59. Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Efficacy and safety of Pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2019;37(17):1470–8.

    Article  CAS  PubMed  Google Scholar 

  60. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of Pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4(5):e180013.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65.

    Article  CAS  PubMed  Google Scholar 

  62. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–52.

    Article  PubMed  Google Scholar 

  63. Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II study of the efficacy and safety of Pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nghiem P, Bhatia S, Lipson EJ, Sharfman WH, Kudchadkar RR, Brohl AS, et al. Durable tumor regression and overall survival in patients with advanced Merkel cell carcinoma receiving Pembrolizumab as first-line therapy. J Clin Oncol. 2019;37(9):693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  PubMed  Google Scholar 

  66. Armand P, Rodig S, Melnichenko V, Thieblemont C, Bouabdallah K, Tumyan G, et al. Pembrolizumab in relapsed or refractory primary mediastinal large B-cell lymphoma. J Clin Oncol. 2019;37(34):3291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 2018;19(3):405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27.

    Article  CAS  PubMed  Google Scholar 

  69. Stenger M. Pembrolizumab in MSI-H or dMMR solid tumors: ‘First Tissue/Site-Agnostic’ approval by FDA The ASCO Post; 2018. Available from: https://www.ascopost.com/issues/february-10-2018/pembrolizumab-in-msi-h-or-dmmr-solid-tumors-first-tissuesite-agnostic-approval-by-fda/

  70. Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17(10):1374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Apolo AB, Infante JR, Balmanoukian A, Patel MR, Wang D, Kelly K, et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, Phase Ib study. J Clin Oncol. 2017;35(19):2117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, et al. Avelumab plus Axitinib versus Sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther. 2018;12:195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shima M, Hanabusa H, Taki M, Matsushita T, Sato T, Fukutake K, et al. Factor VIII-mimetic function of humanized bispecific antibody in hemophilia a. N Engl J Med. 2016;374(21):2044–53.

    Article  CAS  PubMed  Google Scholar 

  75. Wu JC, Chen CH, Fu JW, Yang HC. Electrophoresis-enhanced detection of deoxyribonucleic acids on a membrane-based lateral flow strip using avian influenza H5 genetic sequence as the model. Sensors (Basel). 2014;14(3):4399–415.

    Article  CAS  Google Scholar 

  76. Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol. 2010;48(7):2495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Byrne H, Conroy PJ, Whisstock JC, O’Kennedy RJ. A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol. 2013;31(11):621–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. WHO. Global tuberculosis report, executive summary. 2019.

    Google Scholar 

  79. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363(11):1005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Doan TN, Eisen DP, Rose MT, Slack A, Stearnes G, McBryde ES. Interferon-gamma release assay for the diagnosis of latent tuberculosis infection: a latent-class analysis. PLoS One. 2017;12(11):e0188631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Qiagen_Group. QuantiFERON®-TB Gold Plus (QFT®-Plus) ELISA Package Insert. The whole blood IFN-γ test measuring responses to ESAT-6 and CFP-10 peptide antigens02/2016.

    Google Scholar 

  82. Sigal GB, Pinter A, Lowary TL, Kawasaki M, Li A, Mathew A, et al. A novel sensitive immunoassay targeting the 5-methylthio-d-xylofuranose-lipoarabinomannan epitope meets the WHO’s performance target for tuberculosis diagnosis. J Clin Microbiol. 2018;56(12).

    Google Scholar 

  83. Sarkar S, Tang XL, Das D, Spencer JS, Lowary TL, Suresh MR. A bispecific antibody based assay shows potential for detecting tuberculosis in resource constrained laboratory settings. PLoS One. 2012;7(2):e32340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Broger T, Sossen B, du Toit E, Kerkhoff AD, Schutz C, Ivanova Reipold E, et al. Novel lipoarabinomannan point-of-care tuberculosis test for people with HIV: a diagnostic accuracy study. Lancet Infect Dis. 2019;19(8):852–61.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Drain PK, Heichman KA, Wilson D. A new point-of-care test to diagnose tuberculosis. Lancet Infect Dis. 2019;19(8):794–6.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Collins PL, Graham BS. Viral and host factors in human respiratory syncytial virus pathogenesis. J Virol. 2008;82(5):2040–55.

    Article  CAS  PubMed  Google Scholar 

  87. Eboigbodin KE, Moilanen K, Elf S, Hoser M. Rapid and sensitive real-time assay for the detection of respiratory syncytial virus using RT-SIBA(R). BMC Infect Dis. 2017;17(1):134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. CerTest_Biotech. CERTEST RSV. One step respiratory syncytial virus card test.

    Google Scholar 

  89. Nam HH, Ison MG. Respiratory syncytial virus infection in adults. BMJ. 2019;366:l5021.

    Article  PubMed  Google Scholar 

  90. Koczula KM, Gallotta A. Lateral flow assays. Essays Biochem. 2016;60(1):111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82.

    Article  CAS  PubMed  Google Scholar 

  92. Wu G, Zaman MH. Low-cost tools for diagnosing and monitoring HIV infection in low-resource settings. Bull World Health Organ. 2012;90(12):914–20.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ngom B, Guo Y, Wang X, Bi D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem. 2010;397(3):1113–35.

    Article  CAS  PubMed  Google Scholar 

  94. Ngom B, Guo Y, Wang X, Bi D. Correction to: development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal Bioanal Chem. 2018;410(11):2859.

    Article  CAS  PubMed  Google Scholar 

  95. Pecchia S, Da Lio D. Development of a rapid PCR-nucleic acid lateral flow immunoassay (PCR-NALFIA) based on rDNA IGS sequence analysis for the detection of Macrophomina phaseolina in soil. J Microbiol Methods. 2018;151:118–28.

    Article  CAS  PubMed  Google Scholar 

  96. Sajid M. Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc. 2015;19(6):689–705.

    Article  Google Scholar 

  97. Li Z, Chen H, Wang P. Lateral flow assay ruler for quantitative and rapid point-of-care testing. Analyst. 2019;144(10):3314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jia Li DM, Macdonald J. Enhancing the signal of lateral flow immunoassays by using different developing methods. Sensors Mater. 2015;27(7):549–61.

    Google Scholar 

  99. Millipore E. Rapid lateral flow test strips: considerations for product development. 2013.

    Google Scholar 

  100. Hsieh HV, Dantzler JL, Weigl BH. Analytical tools to improve optimization procedures for lateral flow assays. Diagnostics (Basel). 2017;7(2).

    Google Scholar 

  101. Ren M, Xu H, Huang X, Kuang M, Xiong Y, Xu H, et al. Immunochromatographic assay for ultrasensitive detection of aflatoxin B(1) in maize by highly luminescent quantum dot beads. ACS Appl Mater Interfaces. 2014;6(16):14215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shi L, Wu F, Wen Y, Zhao F, Xiang J, Ma L. A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay. Anal Bioanal Chem. 2015;407(2):529–35.

    Article  CAS  PubMed  Google Scholar 

  103. Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Dzantiev BB. Enhancement of lateral flow immunoassay by alkaline phosphatase: a simple and highly sensitive test for potato virus X. Mikrochim Acta. 2017;185(1):25.

    Article  PubMed  CAS  Google Scholar 

  104. Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971;8(9):871–4.

    Article  CAS  PubMed  Google Scholar 

  105. Engvall E, Jonsson K, Perlmann P. Enzyme-linked immunosorbent assay. II. Quantitative assay of protein antigen, immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes. Biochim Biophys Acta. 1971;251(3):427–34.

    Article  CAS  PubMed  Google Scholar 

  106. Castro C, Gourley M. Diagnostic testing and interpretation of tests for autoimmunity. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S238–47.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lindstrom P, Wager O. IgG autoantibody to human serum albumin studied by the ELISA-technique. Scand J Immunol. 1978;7(5):419–25.

    Article  CAS  PubMed  Google Scholar 

  108. Kohl TO, Ascoli CA. Indirect immunometric ELISA. Cold Spring Harb Protoc. 2017;2017(5).

    Google Scholar 

  109. Kato K, Hamaguchi Y, Okawa S, Ishikawa E, Kobayashi K. Use of rabbit antiboty IgG bound onto plain and aminoalkylsilyl glass surface for the enzyme-linked sandwich immunoassay. J Biochem. 1977;82(1):261–6.

    Article  CAS  PubMed  Google Scholar 

  110. Kato K, Hamaguchi Y, Okawa S, Ishikawa E, Kobayashi K, Katunuma N. Use of rabbit antibody IgG-loaded silicone pieces for the sandwich enzymoimmunoassay of macromolecular antigens. J Biochem. 1977;81(5):1557–66.

    CAS  PubMed  Google Scholar 

  111. Yorde DE, Sasse EA, Wang TY, Hussa RO, Garancis JC. Competitive enzyme-linked immunoassay with use of soluble enzyme/antibody immune complexes for labeling. I. Measurement of human choriogonadotropin. Clin Chem. 1976;22(8):1372–7.

    Article  CAS  PubMed  Google Scholar 

  112. Hornbeck PV. Enzyme-linked immunosorbent assays. Curr Protoc Immunol. 2015;110:2 1–2 1 23.

    Google Scholar 

  113. Matyjaszek-Matuszek B, Pyzik A, Nowakowski A, Jarosz MJ. Diagnostic methods of TSH in thyroid screening tests. Ann Agric Environ Med. 2013;20(4):731–5.

    CAS  PubMed  Google Scholar 

  114. Kohl TO, Ascoli CA. Immunometric double-antibody sandwich enzyme-linked immunosorbent assay. Cold Spring Harb Protoc. 2017;2017(6):pdb prot093724.

    Google Scholar 

  115. Haapakoski R, Karisola P, Fyhrquist N, Savinko T, Lehtimaki S, Wolff H, et al. Toll-like receptor activation during cutaneous allergen sensitization blocks development of asthma through IFN-gamma-dependent mechanisms. J Invest Dermatol. 2013;133(4):964–72.

    Article  CAS  PubMed  Google Scholar 

  116. Kragstrup TW, Vorup-Jensen T, Deleuran B, Hvid M. A simple set of validation steps identifies and removes false results in a sandwich enzyme-linked immunosorbent assay caused by anti-animal IgG antibodies in plasma from arthritis patients. Springerplus. 2013;2(1):263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sakamoto S, Putalun W, Vimolmangkang S, Phoolcharoen W, Shoyama Y, Tanaka H, et al. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med. 2018;72(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  118. Alexander TS. Human immunodeficiency virus diagnostic testing: 30 years of evolution. Clin Vaccine Immunol. 2016;23(4):249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bystryak S, Santockyte R. Increased sensitivity of HIV-1 p24 ELISA using a photochemical signal amplification system. J Acquir Immune Defic Syndr. 2015;70(2):109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hulett HR, Bonner WA, Barrett J, Herzenberg LA. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science. 1969;166(3906):747–9.

    Article  CAS  PubMed  Google Scholar 

  121. El-Sayed AM, El-Borai MH, Bahnassy AA, El-Gerzawi SM. Flow cytometric immunophenotyping (FCI) of lymphoma: correlation with histopathology and immunohistochemistry. Diagn Pathol. 2008;3:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008;111(8):3941–67.

    Article  CAS  PubMed  Google Scholar 

  123. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37(2):163–76.

    Article  CAS  PubMed  Google Scholar 

  124. Demurtas A, Stacchini A, Aliberti S, Chiusa L, Chiarle R, Novero D. Tissue flow cytometry immunophenotyping in the diagnosis and classification of non-Hodgkin’s lymphomas: a retrospective evaluation of 1,792 cases. Cytometry B Clin Cytom. 2013;84(2):82–95.

    Article  PubMed  Google Scholar 

  125. Karawajew L, Dworzak M, Ratei R, Rhein P, Gaipa G, Buldini B, et al. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica. 2015;100(7):935–44.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yamauchi H, Stearns V, Hayes DF. When is a tumor marker ready for prime time? A case study of c-erbB-2 as a predictive factor in breast cancer. J Clin Oncol. 2001;19(8):2334–56.

    Article  CAS  PubMed  Google Scholar 

  127. Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, et al. HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol. 1997;15(8):2894–904.

    Article  CAS  PubMed  Google Scholar 

  128. Andrulis IL, Bull SB, Blackstein ME, Sutherland D, Mak C, Sidlofsky S, et al. neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto breast cancer study group. J Clin Oncol. 1998;16(4):1340–9.

    Article  CAS  PubMed  Google Scholar 

  129. Roche PC, Ingle JN. Increased HER2 with U.S. Food and Drug Administration-approved antibody. J Clin Oncol. 1999;17(1):434.

    Google Scholar 

  130. Perez EA, Cortes J, Gonzalez-Angulo AM, Bartlett JM. HER2 testing: current status and future directions. Cancer Treat Rev. 2014;40(2):276–84.

    Article  CAS  PubMed  Google Scholar 

  131. Sauter G, Lee J, Bartlett JM, Slamon DJ, Press MF. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol. 2009;27(8):1323–33.

    Article  CAS  PubMed  Google Scholar 

  132. Takai H, Kato A, Nakamura T, Tachibana T, Sakurai T, Nanami M, et al. The importance of characterization of FITC-labeled antibodies used in tissue cross-reactivity studies. Acta Histochem. 2011;113(4):472–6.

    Article  CAS  PubMed  Google Scholar 

  133. Zalutsky MR. Potential of immuno-positron emission tomography for tumor imaging and immunotherapy planning. Clin Cancer Res. 2006;12(7 Pt 1):1958–60.

    Article  CAS  PubMed  Google Scholar 

  134. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.

    Article  CAS  PubMed  Google Scholar 

  135. Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60(12):1421–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bailly C, Clery PF, Faivre-Chauvet A, Bourgeois M, Guerard F, Haddad F, et al. Immuno-PET for clinical theranostic approaches. Int J Mol Sci. 2016;18(1).

    Google Scholar 

  137. Schoffelen R, Sharkey RM, Goldenberg DM, Franssen G, McBride WJ, Rossi EA, et al. Pretargeted immuno-positron emission tomography imaging of carcinoembryonic antigen-expressing tumors with a bispecific antibody and a 68Ga- and 18F-labeled hapten peptide in mice with human tumor xenografts. Mol Cancer Ther. 2010;9(4):1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McBride WJ, Zanzonico P, Sharkey RM, Noren C, Karacay H, Rossi EA, et al. Bispecific antibody pretargeting PET (immunoPET) with an 124I-labeled hapten-peptide. J Nucl Med. 2006;47(10):1678–88.

    CAS  PubMed  Google Scholar 

  139. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol. 2002;13(6):603–8.

    Article  CAS  PubMed  Google Scholar 

  140. Oliver J. Antibody applications. Mater Methods. 2013;3:182.

    Google Scholar 

  141. Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc. 2009;2009(9):pdb prot5279.

    Google Scholar 

  142. Eberl HC, Mann M, Vermeulen M. Quantitative proteomics for epigenetics. Chembiochem. 2011;12(2):224–34.

    Article  CAS  PubMed  Google Scholar 

  143. O’Neill LP, Turner BM. Immunoprecipitation of native chromatin: NChIP. Methods. 2003;31(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  144. Mutneja M, Mohan C, Long KD, Das C. An introduction to antibodies and their applications. 2013.

    Google Scholar 

  145. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22(9):1813–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15.

    Article  CAS  PubMed  Google Scholar 

  147. Engvall E. The ELISA, enzyme-linked immunosorbent assay. Clin Chem. 2010;56(2):319–20.

    Article  CAS  PubMed  Google Scholar 

  148. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  CAS  PubMed  Google Scholar 

  149. Saeed AF, Wang R, Ling S, Wang S. Antibody engineering for pursuing a healthier future. Front Microbiol. 2017;8:495.

    PubMed  PubMed Central  Google Scholar 

  150. Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Basics of antibody phage display technology. Toxins (Basel). 2018;10(6).

    Google Scholar 

  151. Faulk WP, Taylor GM. An immunocolloid method for the electron microscope. Immunochemistry. 1971;8(11):1081–3.

    Article  CAS  PubMed  Google Scholar 

  152. Chang L, Li J, Wang L. Immuno-PCR: an ultrasensitive immunoassay for biomolecular detection. Anal Chim Acta. 2016;910:12–24.

    Article  CAS  PubMed  Google Scholar 

  153. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol. 2002;20(5):473–7.

    Article  CAS  PubMed  Google Scholar 

  154. Doerner A, Rhiel L, Zielonka S, Kolmar H. Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett. 2014;588(2):278–87.

    Article  CAS  PubMed  Google Scholar 

  155. Rhiel L, Krah S, Gunther R, Becker S, Kolmar H, Hock B. REAL-select: full-length antibody display and library screening by surface capture on yeast cells. PLoS One. 2014;9(12):e114887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Federspiel JD, Cristea IM. Considerations for identifying endogenous protein complexes from tissue via immunoaffinity purification and quantitative mass spectrometry. Methods Mol Biol. 1977;2019:115–43.

    Google Scholar 

  157. Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW. Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res. 2004;3(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  158. Xu Q, Zhu M, Yang T, Xu F, Liu Y, Chen Y. Quantitative assessment of human serum transferrin receptor in breast cancer patients pre- and post-chemotherapy using peptide immunoaffinity enrichment coupled with targeted proteomics. Clin Chim Acta. 2015;448:118–23.

    Article  CAS  PubMed  Google Scholar 

  159. Mason DR, Reid JD, Camenzind AG, Holmes DT, Borchers CH. Duplexed iMALDI for the detection of angiotensin I and angiotensin II. Methods. 2012;56(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  160. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Dore V, et al. High performance plasma amyloid-beta biomarkers for Alzheimer’s disease. Nature. 2018;554(7691):249–54.

    Article  CAS  PubMed  Google Scholar 

  161. Schoenherr RM, Saul RG, Whiteaker JR, Yan P, Whiteley GR, Paulovich AG. Anti-peptide monoclonal antibodies generated for immuno-multiple reaction monitoring-mass spectrometry assays have a high probability of supporting Western blot and ELISA. Mol Cell Proteomics. 2015;14(2):382–98.

    Article  CAS  PubMed  Google Scholar 

  162. Trenchevska O, Sherma ND, Oran PE, Reaven PD, Nelson RW, Nedelkov D. Quantitative mass spectrometric immunoassay for the chemokine RANTES and its variants. J Proteome. 2015;116:15–23.

    Article  CAS  Google Scholar 

  163. Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165(4):780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

  • Vaughan T, Osbourn J, Jallal B. Protein therapeutics. Wiley-VCH Verlag GmbH & Co. KGaA; 2017.

    Google Scholar 

  • George AJT, Urch CE. Diagnostic and therapeutic antibodies. Totowa, NJ: Humana Press; 2000. xiv, 477 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rhiel, L., Becker, S. (2021). Applications of Antibodies in Therapy, Diagnosis, and Science. In: Rüker, F., Wozniak-Knopp, G. (eds) Introduction to Antibody Engineering. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-54630-4_6

Download citation

Publish with us

Policies and ethics