Skip to main content

Mycoremediation: A Novel Approach to Rescue Soil from Heavy Metal Contamination

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

  • 571 Accesses

Abstract

The incessant and indiscriminate use of chemicals, agriculture fertilizers, sewage disposal, tar, accidental spillages, and explosives has been cardinally contaminating soil, water bodies, and air, which has created an alarming situation globally. The exuberant industrial growth and various developments and establishments have added to the exponential increase in the production of various municipal, industrial, and domestic wastes. All these waste materials are discarded either in landfill/soil or in the sea without undergoing initial treatment, thus annexing to the contamination of the environment as a whole. Among other chemical remediation technologies fungi have the high potency for remediation. Mycoremediationis rapidly emerging as a robust methodology to deal with abiotic metal/organic contaminant stress. Fungi can act as pivtol role because their efficient adaptation in varied surroundings and emerge as key players in reducing the heavy metal contamination, high tolerance to lethal metal environments, and an inherent elaborate detoxification mechanism make them an ideal tool against heavy metal toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anza M, Salaza O, Epelde L, María J, Alkorta BI, Garbisu C (2019) Remediation of organically contaminated soil through the combination of assisted phytoremediation and bioaugmentation. Appl Sci 9:4757. https://doi.org/10.3390/app9224757

    Article  CAS  Google Scholar 

  • Asiriuwa OD, Ikhuoria JU, Ilori EG (2013) Myco-remediation potential of heavy metals from contaminated soil. Bull Environ Pharmacol Life Sci 2(5):16–22

    Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microbial Technol 32(1):78–91

    Article  CAS  Google Scholar 

  • Bano A, Hussain J, Akbar A, Mehmood K et al (2018) Biosorption of heavy metals by obligate halophilic fungi. Chemosphere 199:218–222. https://doi.org/10.1016/j.chemosphere.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    Article  CAS  PubMed  Google Scholar 

  • Benes V, Leonhardt T, Sacky J, Kotrba P (2018) Two P1B-1-ATPases of Amanita strobiliformis with distinct properties in Cu/Ag transport. Front Microbial 9:747. https://doi.org/10.3389/fmicb.2018.00747

    Article  Google Scholar 

  • Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1111

    Article  CAS  PubMed  Google Scholar 

  • Brady D, Ducan JR (1994) Bioaccumulation of metal-cations by Saccharomyces cerevisae. Appl Microbiol Biotechnol 41:149–154

    Article  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  CAS  PubMed  Google Scholar 

  • Carmen CE, Gabriela B (2013) The mycoremediation of metals polluted soils using wild growing species of mushrooms. Latest Trends Eng Educ 38:147–151. ISSN: 1792-426X 36-39

    Google Scholar 

  • Checcucci A, Bazzicalupo M, Mengoni A (2017) Exploiting nitrogen fixing rhizobial symbionts genetic resources for improving phytoremediation of contaminated soils. In: Naser A, Anjum A, Gill SS, Tuteja N (eds) Enhancing cleanup of environmental pollutants: biological approaches. Springer International Publishing, Cham, pp 275–288

    Chapter  Google Scholar 

  • Compos C, Nobre T, Goss MJ, Faria J, Barrulas P, Carvalho M (2019) Transcriptome analysis of wheat roots reveals a differential regulation of stress responses related to arbuscular mycorrhizal fungi and soil disturbance. Biology 8(4):93. https://doi.org/10.3390/biology8040093

    Article  CAS  Google Scholar 

  • Coninx L, Smisdom N, Kohler A, Natascha A et al (2019) SIZRT2 encoded a ZIP family Zn transporter with dual localization in the ectomycorrhizal fungus. Front Microbiol 10:2251. https://doi.org/10.3389/fmicb.2019.02251

    Article  PubMed  PubMed Central  Google Scholar 

  • Das A, Osborne JW (2018) Bioremediation of heavy metals. In: Nanotechnology, food security and water treatment. Springer, Cham, pp 277–311

    Chapter  Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol, Taylor and Francis group 32(5):467–491

    Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Dönmez G, Aksu Z (2002) Removal of chromium(VI) from saline wastewaters by Dunaliella species. Process Biochem 38:751–762

    Article  Google Scholar 

  • Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microb Technol 7:194–196

    Article  CAS  Google Scholar 

  • El Hameed AHA, Eweda WE, Abou-Taleb KA, Mira H (2015) Biosorption of uranium and heavy metals using some local fungi isolated from phosphatic fertilizers. Ann Agric Sci 60(2):345–351

    Article  Google Scholar 

  • Feng G, Xie T, Wang X, Bai J, Tang L, Zhao H, Wei W, Wang M, Zhao Y (2018) Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiol 18:11. https://doi.org/10.1186/s12866-018-1152-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharieb MM, Sayed JA, Gadd GM (1998) Solubilization of natural ypsum(CaSO4.2H2O) and the formation of Calcium Oxalate by Aspergillus Niger and Serpula humatioides. Mycol Res 102:825–830

    Article  CAS  Google Scholar 

  • Gonzalez E, Pitre FE, Pagé AP et al (2018) Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. Microbiome 6(53):1–30

    CAS  Google Scholar 

  • Guerrero GM, Melville LH, Ferrol N, Lott JN, Azcon-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110. https://doi.org/10.1139/w07-119

    Article  Google Scholar 

  • Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Grace A et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136. https://doi.org/10.1007/s13225-019-00430-9

    Article  Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP et al (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from Tannery wastewater: a review. J Toxicol 2018:1–16

    Article  CAS  Google Scholar 

  • Jain KK, Kumar A et al (2020) De nova transcriptome assembly and protein profiling of copper induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocelluloses degradation and terpenoid biosynthetic pathways. Genomics 112:184–198

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal S, Singh DK, Shukla P (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol 10:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaswal R, Pathak A, Chauhan A (2019) Metagenomic evaluation of bacterial and fungal assemblages enriched within diffusion chambers and microbial traps containing uraniferous soils. Microorganisms 7:324. https://doi.org/10.3390/microorganisms7090324

    Article  CAS  PubMed Central  Google Scholar 

  • Kaewdoung B, Sutjaritvorakul T, Gadd GM, Whalley AJS, Sihanonth P (2016) Heavy metal tolerance and biotransformation of toxic metal compounds by new isolates of wood-rotting fungi from Thailand. Geo Microbiol J 33:283–288. https://doi.org/10.1080/01490451.2015.1048394

    Article  CAS  Google Scholar 

  • Kamei I, Takagi K, Kondo R (2011) Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsuta. J Wood Sci 57:317–322

    Article  CAS  Google Scholar 

  • Kameo S, Iwahashi H, Kojima Y, Satoh H (2000) Induction of metallothioneins in the heavy metal resistant fungus Beauveria bassiana exposed to copper or cadmium. Analusis 28:382–385

    Article  CAS  Google Scholar 

  • Khodja H, Iddou A, Aguedal H, Aziz A, Shishkin A (2018) Bioremoval of lead (II) and cadmium (II) in single and multicomponent systems using Penicillium sp. Key Eng Mater Trans Tech Publ 762:93–98

    Article  Google Scholar 

  • Kovalchuk A, Driessen AJM (2010) Phylogenetic analysis of fungal ABC transporters. BMC Genomics 11:177. https://doi.org/10.1186/1471-2164-11-177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalchuk A, Lee YH, Asiegbu FO (2013) Diversity and evolution of ABC proteins in basidiomycetes. Mycologia 105(6):1456–1470. https://doi.org/10.3852/13-001

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Prasad R, Goyal P, Teotia P, Tuteja N, Varma A, Kumar V (2017) Environmental biodegradation of xenobiotics: role of potential microflora. In: Hashmi MZ, Kumar V and Varma A (eds.), Xenobiotics in the Soil Environment, Springer International Publishing Switzerland 319–334

    Google Scholar 

  • Lamar RT, White RB (2001) Mycoremediation: commercial status and recent developments. In: Magar VS et al (eds) Proceedings of the sixth international symposium on in situ and on-site bioremediation, vol 6, San Diego, pp 263–278

    Google Scholar 

  • Lingua G, Bona E, Todeschini V, Cattaneo C, Marsano F, Berta G, Cavalet M (2012) Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis. PLoS One 7(6):e38662. https://doi.org/10.1371/journal.pone.0038662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Safe Environ 102:558–566

    Article  CAS  Google Scholar 

  • Maini ZAN, Aribal KMJ, Narag RMA et al (2019) Lead (II) tolerance and uptake capacities of fungi isolated from a polluted tributary in the Philippines. Appl Environ Biotechnol 4(1):18–29. https://doi.org/10.26789/AEB.2019.01.004

    Article  CAS  Google Scholar 

  • Meijrink M, Verwaal R, Gielesen BEM, Roubos JA, Nygård YI, Bovenberg RAL, Driessen AJM, Pohl C (2016) A CRISPR-CAS system for a filamentous fungal host cell. WO2016110453A8 WIPO (PCT) patent

    Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metal and metalloids. Front Plant Sci 7:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyakundi WO, Magoma G, Ochora J, Nyende AB (2011) Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in rift valley and Central Kenya. J Appl Technol Environ Sanit 1:107–1249

    CAS  Google Scholar 

  • Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S (2009) ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 73(4):577–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires C, Franco AR, Pereira SIA, Henriques I, Correia A, Magan N et al (2017) Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiol J 1:9

    Google Scholar 

  • Ramsay LM, Gadd GM (1997) Mutants of Saccharomyces cerevisiae defective in vacuolar function confirms a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Lett 152:293–298

    Google Scholar 

  • Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi (2018). In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Rosen BP (2002) Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 133:689–693

    Article  PubMed  Google Scholar 

  • Ruscitti M, Arango M, Belgrano J (2017) Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi. Theor Exp Plant Physiol 29:37–49. https://doi.org/10.1007/s40626-016-0081-7

    Article  Google Scholar 

  • Sarma H, Forid N, Prasad R, Prasad MNV, Ma LQ, Rinklebe J (2021) Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR–Cas9 technology. Journal of Hazardous Materials https://doi.org/10.1016/j.jhazmat.2021.125493

  • Sen M (2018) Enhanced biological removal of Cr (VI) in continuous stirred tank reactor (CSTR) using Aspergillus sp. Braz J Biol Sci 5(9):33–50

    Article  Google Scholar 

  • Shen J, Hsu CM, Kang BK, Rosen BP, Bhattacharjee H (2003) The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals 16:369–378

    Article  CAS  PubMed  Google Scholar 

  • Singh JS (2015) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Subudhi E, Kar RN (2008) Rhizopus arrhizus- an efficient fungus for copper effluent treatment. Int J Integr Biol 2:166–171

    CAS  Google Scholar 

  • Tamayo E, Gallego TG, Aguilar CA, Ferrol N (2014) Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 5:547

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R (2021) Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current Research in Biotechnology https://doi.org/10.1016/j.crbiot.2021.02.004

  • Tkavc R, Matrosova VY, Grichenko OE et al (2018) Prospects for fungal bioremediation of acidic radioactive waste sites: characterization and genome sequence of Rhodotorula taiwanensis MD1149. Front Microbiol 08. https://doi.org/10.3389/fmicb.2017.02528

  • Xiao P, Mori T, Kamei I, Kiyota H et al (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere 85:218–224

    Article  CAS  PubMed  Google Scholar 

  • Yamaji K, Watanabe Y, Masuya H, Shigeto A, Yui H, Haruma T (2016) Root fungal endophytes enhance heavy metal stress tolerance of Clethra barbinerv is growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy metal concentration. PLoS One 11(12):e0169089. https://doi.org/10.1371/journal.pone.0169089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Q, Yang R, Long L, Zhu H (2014) Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via polyphosphate accumulation in fungal hyphae. Environ Exp Bot 108:63–70. https://doi.org/10.1016/j.envexpbot.2013.11.007

    Article  CAS  Google Scholar 

  • Yildirim V, Ozcan S, Becher D, Buttner K, Hecker M, Ozcengiz G (2011) Characterization of Proteome alterations on Phanerochaete chrysosporium in response to lead exposure. Proteome Sci 9:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulbhi Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S., Srivastava, J. (2021). Mycoremediation: A Novel Approach to Rescue Soil from Heavy Metal Contamination. In: Prasad, R., Nayak, S.C., Kharwar, R.N., Dubey, N.K. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-54422-5_5

Download citation

Publish with us

Policies and ethics