Skip to main content

Techniques of Epithelial Transport Physiology

  • Chapter
  • First Online:
Basic Epithelial Ion Transport Principles and Function

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 434 Accesses

Abstract

Epithelial tissues play many roles in maintaining homeostasis of the human body. These tissues separate the body from the external environment (e.g., skin which protects the body), and of course, epithelial tissues separate body compartments, line the surfaces of organs, and line the inner surfaces of many hollow organs. Epithelial cells are polarized as there are specific transport proteins (ion channels and ion transporters) residing in the apical and basolateral membranes of the epithelial cells. Different epithelial cells perform specific functions in the regulation of absorption and secretion of ions, solutes, nutrients, and water. Understanding how these tissues (cells) function has been challenging and a number of techniques have been developed and/or adapted to study the functions of epithelial tissues and cells. Our ability to understand the physiology and the disease pathophysiology of epithelial tissues and cells is really reduced down to determining the fundamental characteristics and basic biology/physiology of the specific ion channels and ion transporters participating in overall epithelial transport physiology. This chapter provides a historical overview of various experimental techniques which have been instrumental and are still employed to discover intriguing aspects of epithelial ion transport physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acra SA, Ghishan FK (1991) Methods of investigation intestinal transport. JPEN J Parenter Enteral Nutr 15:93S–98S

    Article  CAS  PubMed  Google Scholar 

  • Alam MA, Al-Jenoobi FI, Al-mohizea AM (2011) Everted gut sac model as a tool in pharmaceutical research: limitations and applications. J Pharmac Pharmacol 64:326–336

    Article  CAS  Google Scholar 

  • Anderson RF, Diffenbaugh MD, Schmidtke WH (1962) Isolated intestinal loop. Arch Surg. 84:559–563

    Article  CAS  PubMed  Google Scholar 

  • Andolfo I, Russo R, Manna F, Shmukler BF, Gambale A, Vitiello G, De Rosa G, Brugnara C, Alper SL, Snyder LM, Iolascon A (2015) Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis). Am J Hematol 90:921–926

    Article  CAS  PubMed  Google Scholar 

  • Angel A. (2001) Gerald Wiseman MB BS MD PhD—Obituary. Physiol Soc Newsl, Autumn, p 31

    Google Scholar 

  • Arnheim N, Erlich H (1992) Polymerase chain reaction strategy. Annu Rev Biochem 61:131–156

    Article  CAS  PubMed  Google Scholar 

  • Ashworth SL, Sandoval RM, Tanner GA, Molitoris BA (2007) Two-photon microscopy: visualization of kidney dynamics. Kidney Int 72:416–421

    Article  CAS  PubMed  Google Scholar 

  • Astell CR (2001) Michael Smith 26 April 1932 – 4 October 2000. Biogr Mem Fellow R Soc 47:429–441

    Article  CAS  Google Scholar 

  • Astell C, Smith M (1971) Thermal elution of complementary sequences of nucleic acids from cellulose columns with covalently attached oligonucleotides of known length and sequence. J Biol Chem 246:1944–1946

    CAS  PubMed  Google Scholar 

  • Astell CR, Smith M (1972) Synthesis and properties of oligonucleotide-cellulose columns. Biochemistry 11:4114–4120

    Article  CAS  PubMed  Google Scholar 

  • Astell CR, Doel MT, Jahnke PA, Smith M (1973) Further studies on the properties of oligonucleotide cellulose columns. Biochemistry 12:5068–5078

    Article  CAS  PubMed  Google Scholar 

  • Bachman J (2013) Site-directed mutagenesis. Methods Enzymol 529:241–248

    Article  CAS  PubMed  Google Scholar 

  • Bandulik S, Schmidt K, Bockenhauer D, Zbelik AA, Humberg E, Kleta R, Warth R, Reichold M (2011) The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms lined to the KCNJ10 K+ channel. Pflügers Arch 461:423–435

    Article  CAS  PubMed  Google Scholar 

  • Barker Jørgensen C, Levi H, Ussing HH (1946) On the influence of the neurohypophysial principles on the sodium metabolism in the axolotl (Ambystoma mexicanum). Acta Physiol Scand 12:350–371

    Article  Google Scholar 

  • Beck JC, Sacktor B (1978) The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem 253:5531–5535

    CAS  PubMed  Google Scholar 

  • Becquerel AH (1903) On radioactivity, a new property of matter. Nobel Prize in Physics 1903 Lecture. www.nobelprize.org/nobel_prizes/physics/laureates/1903/becquerel-lecture.html

  • Bichet DG (2008) Vasopressin receptor mutations in nephrogenic diabetes insipidus. Sem Nephrol 28:245–251

    Article  CAS  Google Scholar 

  • Blair EA, Erlanger J (1932) Responses of axons through their individual electrical responses. Proc Soc Exp Biol (NY) 29:926–927

    Article  Google Scholar 

  • Bockenhauer D, Feather S, Standescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, van’t Hoff W, Al Masri O, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillion MJ, Heitzmann D, Arcos-Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy and KCNJ10 mutations. N Engl J Med 360:1960–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner BM, Troy JL, Daugharty TM (1971) The dynamics of glomerular ultrafiltration in the rat. J Clin Invest 50:1776–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner BM, Troy JL, Daugharty TM, Deen WM, Robertson CR (1972) Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR. Am J Physiol 223:1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Bubien JK, Ismailov II, Berdiev BK, Cornwell T, Lifton RP, Fuller CM, Achard J-M, Benos DJ, Warnock DG (1996) Liddle’s disease: abnormal regulation of amiloride-sensitive Na+ channel by β-subunit mutation. Am J Physiol Cell Physiol 270:C208–C213

    Article  CAS  Google Scholar 

  • Burg MB (1972) Perfusion of isolated renal tubules. Yale J Biol Med 45:321–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burg MB (1982) Introduction: background and development of microperfusion technique. Kidney Int 22:414–424

    Google Scholar 

  • Burg MB (2018) Autobiography of Maurice (Moe) B. Burg. CreateSpace Independent Publishing Platform, 124 pp. ISBN: 978-1982036317

    Google Scholar 

  • Burg MB, Knepper MA (1986) Single tubule perfusion techniques. Kidney Int 30:166–170

    Article  CAS  PubMed  Google Scholar 

  • Burg M, Grantham JJ, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Physiol 210:1293–1298

    Article  CAS  PubMed  Google Scholar 

  • Burg M, Grantham JJ, Abramow M, Orloff J, Schafer JA (1997) Preparation and study of fragments of single rabbit nephrons. J Am Soc Neophrol 8:675–683 (reprint of the 1966 paper including commentaries by MB Burg and JA Schafer)

    Google Scholar 

  • Burris RH (1950) Isotopes as tracers in plants. Botanical Rev 16:150–180

    Article  CAS  Google Scholar 

  • Christie DA, Tansey EM. (2000) Intestinal absorption. Wellcome Witness to Twentieth Century Medicine. Wellcome Trust, London, 81 pp

    Google Scholar 

  • Clarke LL (2009) A guide to Ussing chamber studies of mouse intestine. Am J Physiol Gastrointest Liver Physiol 296:G1151–G1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockcroft JD (1967) George De Hevesy, 1885-1966. Biogr Mems Fell R Soc 13:125–166

    Article  CAS  Google Scholar 

  • Cori CF (1925) The fate of sugar in the animal body. I. The rate of absorption of hexoses and pentoses from the intestinal tract. J Biol Chem 66:691–715

    CAS  Google Scholar 

  • Crane RK (1965) Na+-dependent transport in the intestine and other animal tissues. Fed Proc 24:1000–1006

    CAS  PubMed  Google Scholar 

  • Creager AN (2013) Life atomic: a history of radioisotopes in science and medicine. University of Chicago Press, Chicago, IL, 512 pp

    Book  Google Scholar 

  • Curie P (1905) Radioactive substances, especially radium. Nobel Prize in Physics 1903 Lecture presented in March 1905. www.nobelprize.org/nobel_prizes/physics/laureates/1903/pierre-curie-lecture.html

  • Curie M (1911) Radium and the new concepts in chemistry. Nobel Prize in Chemistry—1911 Lecture. www.nobelprize.org/nobel_prizes/chemistry/laureates/1911/marie-curie-lecture.html

  • Darlington WA, Quastel JH (1953) Absorption of sugars from isolated surviving intestine. Arch Biochem Biophys 43:194–207

    Article  CAS  PubMed  Google Scholar 

  • de Hevesy G (1944) Some applications of isotopic indicators. Nobel Prize in Chemistry—1943 Lecture (awarded in 1944). www.nobelprize.org/nobel_prizes/chemistry/laureates/1943/hevesy-lecture.html

  • DeLisi C (1988) The human genome project. Am Sci 76:488–493

    Google Scholar 

  • DeLisi C (2001) Genomes: 15 years—later a perspective by Charles DeLisi. Hum Genome News. 11:3–4

    Google Scholar 

  • DeLisi C (2008) Sante Fe 1986: human genome baby-steps. Nature 455:876–877

    Article  CAS  PubMed  Google Scholar 

  • Devuyst O, Thakker RV (2010) Dent’s disease. Orphaner J Rare Dis 5:28. https://doi.org/10.1186/1750-1172-5-28

    Article  Google Scholar 

  • DuBois Raymond E (1848) Untersuchungen über tierisches elektrizität, Berlin

    Google Scholar 

  • Dulbecco R (1986) Turning point in cancer research, sequencing the human genome. Science 231:1055–1056

    Article  CAS  PubMed  Google Scholar 

  • Dutrochet H (1826) L’agent immédiat du mouvement vital dévoilé dans sa nature et dans son mode d’action, chez les vegétaux et chez les animaux. Paris (quoted by Reid EW, 1890)

    Google Scholar 

  • Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor nerve endings. J Physiol 117:109–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RB, Parsons DS (1949) A preparation of surviving rat small intestine for the study of absorption. J Physiol 110:36–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forstner GG, Sabesin SM, Isselbacher KJ (1968) Rat intestinal microvillus membranes purification and biochemical characterization. Biochem J 106:381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis WL (1933) Output of electrical energy by frog-skin. Nature 131:805

    Article  Google Scholar 

  • Francis W, Pumphrey R (1933) The electrical properties of frog skin. Part I. Introductory. J Exp Biol 10:379–385

    Google Scholar 

  • Gasko OD, Knowles AF, Shertzer HG, Suolinna EM, Racker E (1976) The use of ion-exchange resins for studying transport in biological systems. Ana Biochem 72:57–65

    Article  CAS  Google Scholar 

  • Gilliam S, Smith M (1974) enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Properties of the enzyme. Nucleic Acids Res 1:1631–1648

    Article  Google Scholar 

  • Gilliam S, Smith M (1979a) Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers: I. Optimum conditions and minimum oligodeoxyribonucleotide length. Gene 8:81–97

    Article  Google Scholar 

  • Gilliam S, Smith M (1979b) Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers: II. In vitro selection of mutant DNA. Gene 8:99–106

    Article  Google Scholar 

  • Gilliam S, Waterman K, Doel M, Smith M (1974) Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Deoxyribo-oligonucleotide synthesis. Nucleic Acids Res 1:1649–1664

    Article  Google Scholar 

  • Gilliam S, Waterman K, Smith M (1975) The pair-pairing specificity of cellulose-pdT9. Nucleic Acids Res 2:625–634

    Article  Google Scholar 

  • Gilliam S, Jahnke P, Astell C, Phillips S, Hutchinson CA III, Smith M (1979) Defined transversion mutations at a specific position in DNA using synthetic oligodeoxyribonucleotides as mutagens. Nucleic Acids Res 6(2):973–2985

    Google Scholar 

  • Glogowska E, Lezon-Geyda K, Maksimova Y, Schulz VP, Gallagher PG (2015) Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis. Blood. 126:1281–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalk CW, Lassiter WE (1973) Micropuncture methodology. In: Orloff J, Berliner RW (eds) Handbook of physiology. Sect. 8: Renal physiology. American Physiological Society, Washington, DC, pp 129–143

    Google Scholar 

  • Gottschalk CW, Mylle M (1959) Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol 196:927–936

    Article  CAS  PubMed  Google Scholar 

  • Grantham JJ (2014) Why I think about urine—and a treatment for polycystic kidney disease. Rockhill Books, Kansas City, MO, 280 pp. ISBN: 9781611691283

    Google Scholar 

  • Grantham JJ, Qualizza PB, Irwin RL (1974) Net fluid secretion in proximal straight renal tubules in vitro: role of PAH. Am J Physiol 226:191–197

    Article  CAS  PubMed  Google Scholar 

  • Grantham JJ, Irish JM III, Hall DA (1978) Studies of isolated renal tubules in vitro. Ann Rev Physiol 40:249–277

    Article  CAS  Google Scholar 

  • Graziana G, Fedell C, Moroni L, Cosmai L, Badlamenti S, Ponticelli C (2010) Gitelman syndrome: pathophysiological and clinical aspects. Q J Med 103:741–748

    Article  Google Scholar 

  • Haase W, Schäfer A, Murer H, Kinne R (1978) Studies on the orientation of brush-border membrane vesicles. Biochem J 172:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara S (1954) Analysis of interval fluctuation of the sensory nerve impulse. Jap J Physiol 4:234–240

    Article  CAS  Google Scholar 

  • Hahn LA, Hevesy GC, Lundsgaard EC (1937) The circulation of phosphorus in the body revealed by application of radioactive phosphorus as indicator. Biochem J 31:1705–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton KL (2011) Ussing’s ‘little chamber’: 60 years+ old and counting. Front Physiol 2:6. https://doi.org/10.3389/fphys.2011.00006

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton KL (2014) Even an old technique is suitable in the modern molecular world of Science: the everted sac preparation—turns 60 years old. Am J Physiol Cell Physiol 306:C715–C720

    Article  CAS  PubMed  Google Scholar 

  • Hamilton KL, Butt AG (2013) Glucose transport into everted sacs of the small intestine of mice. Adv Physiol Educ 37:415–426

    Article  PubMed  Google Scholar 

  • Hamilton KL, Moore AB (2016) 50 years of renal physiology from one man and the perfused tubule: Maurice B. Burg. Am J Physiol Renal Physiol 311:F291–F304

    Article  CAS  PubMed  Google Scholar 

  • Heinemann SH, Conti F (1992) Nonstationary noise analysis and application to patch clamp recordings. Methods Enzymol 207:131–148

    Article  CAS  PubMed  Google Scholar 

  • Hermann JR, Turner JR (2016) Beyond Ussing’s chamber: contemporary thoughts on integration of transepithelial transport. Am J Physiol Cell Physiol 310:C424–C431

    Article  Google Scholar 

  • Hevesy G (1923) LIII. The absorption and translocation of lead by plants. A contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem J 17:435–445

    Article  Google Scholar 

  • Hevesy G (1940) Application of radioactive indicators in biology. Ann Rev Biochem 9:641–662

    Article  CAS  Google Scholar 

  • Hevesy GC (1961) Marie Curie and her contemporaries: the Becquerel-Curie memorial lecture. J Nucl Med 25:116–131

    Google Scholar 

  • Hevesy G (1962) Adventures in radioisotope research, vol I. Pergamon, New York

    Google Scholar 

  • Hevesy G, Hofer E (1934) Elimination of water from the human body. Nature 135:879

    Article  Google Scholar 

  • Hevesy GV, Hofer E, Krogh A (1935) The permeability of the skin of frogs to water as determined by D2O and H2O. Skand Arch Physiol (now Acta Physiol Scand) 72: 199–214 Skandinavisches Archiv Für Physiologie

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) The components of the membrane conductance in the giant axon of Loligo. J Physiol 116:473–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952c) The dual effects of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952d) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Liligo. J Physiol 116:424–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfer U, Nelson K, Perrotto J, Isselbacher KJ (1973) Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem 248:25–32

    CAS  PubMed  Google Scholar 

  • Hutchinson CA III, Phillips S, Edge MH, Gilliam S, Jahnke P, Smith M (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253:6551–6560

    Google Scholar 

  • Ishmael FT, Stellato C (2008) Principles and applications of polymerase chain reaction: basic science for the practicing physician. Ann Allergy Asthma Immunol 101:437–443

    Article  CAS  PubMed  Google Scholar 

  • ISN (2005) International Society of Nephrology Video Legacy Project. Dr. Maurice Burg interviewed by Dr. Mark Knepper. https://cybernephrology/ualberta.ca/ISN/LVP/Trans/burg.htm

    Google Scholar 

  • Jackson PS, Strange K (1996) Single channel properties of a volume sensitive anion channel: lessons from noise analysis. Kidney Int 49:1695–1699

    Article  CAS  PubMed  Google Scholar 

  • Jacobson HR, Kokko JP (1982) Initial remarks and acknowledgements: isolated perfused tubule symposium. Kidney Int 22:415–416

    Article  Google Scholar 

  • Jamison RL (1970) Micropuncture study of superficial and juxtamedullary nephrons in the rat. Am J Physiol 218:46–55

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Rosales A, Flores-Merino MV (2018) Tailoring proteins to re-evolve nature: a short review. Mol Biotech 60:946–974

    Article  CAS  Google Scholar 

  • Keele KD, Roberts J (1983) Leonardo Di Vinci: anatomical drawings from the Royal Library Windsor Castle. The Metropolitan Museum of Art, New York, 167 pp. ISBN: 0-87099-362-3

    Google Scholar 

  • Kessler M, Tannenbaum V, Tannenbaum C (1978) A simple apparatus for performing short time (1-2 seconds) uptake measurements in small volume; its application to D-glucose transport studies in brush border vesicles from rabbit jejunum and ileum. Biochim Biophys Acta 509:348–359

    Article  CAS  PubMed  Google Scholar 

  • Kinne R, Kinne-Saffran E (1981) Membrane vesicles as tools to elucidate epithelial cell function. Eur J Cell Biol 25:346–352

    CAS  PubMed  Google Scholar 

  • Kleppe K, Ohtsuka E, Kleppe R, Molineux I, Khorana HG (1971) Studies of polynucleotides. XCVI. Repair replication of short synthetic DNA’s as catalysed by DNA polymerases. J Mol Biol 56:341–361

    Article  CAS  PubMed  Google Scholar 

  • Kleta R, Bockenhauer D (2006) Bartter syndromes and other salt-losing tubulopathies. Nephron Physiol 104:73–80

    Article  CAS  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Article  CAS  PubMed  Google Scholar 

  • Krogh A (1937a) The use of isotopes as indicators in biological research. Science 85:187–191. https://doi.org/10.1126/science.85.2199.187

    Article  CAS  PubMed  Google Scholar 

  • Krogh A (1937b) Osmotic regulation in the frog (Rana esculenta) by active absorption of chloride ion. Skand Arch Physiol (now Acta Physiol Scand) 76:60–74

    Article  CAS  Google Scholar 

  • Lam JT, Martin MG, Turk E, Hirayama BA, Bosshard NU, Steinmann B, Wright EM (1999) Missense mutations in SGLT1 cause glucose-galactose malabsorption by trafficking defects. Biochim Biophys Acta 1453:297–303

    Google Scholar 

  • Lang F, Greger R, Lechene C, Knox FG (1978) Micropuncture techniques. In: Renal pharmacology, Martinez-Maldonado M.. Chap. 4, p. 75–103, New York: Plenum

    Chapter  Google Scholar 

  • Larsen EH (2002) Hans H. Ussing—scientific work: contemporary significance and perspectives. Biochem Biophys Acta 1566:2–15

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH (2009) Hans Henriksen Ussing. 30 December 1911 – 22 December 2000. Biog Mems Fell R Soc 55:305–300

    Article  Google Scholar 

  • Lee JW, Chou C-L, Knepper MA (2015) Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol 26:2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenneräs H (2007) Animal data: the contributions of the Ussing chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Deliv Rev 59:1103–1120

    Article  CAS  Google Scholar 

  • Lentle B, Aldrich J (1997) Radiological sciences, past and present. Lancet 350:280–285

    Article  CAS  PubMed  Google Scholar 

  • Levi H (1985) George de Hevesy—life and work: a biography. Rhodos, Copenhagen. George de Hevesy—Life and work. A biography by Hilde Levi. Rhodos, Copenhagen, 147 pp. ISBN: 87 7245 0541

    Google Scholar 

  • Levi H, Ussing HH (1948) The exchange of sodium and chloride ions across the fibre membrane of the isolated frog sartorius. Acta Physiol Scand 16:232–249

    Article  CAS  Google Scholar 

  • Levi H, Ussing HH (1949) Resting potential and ion movements in the frog skin. Nature 164:928–930

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B (1980) The beginning of fluctuation analysis of epithelial transport. J Membr Biol 54:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B (1984) Fluctuation analysis of sodum channels in epithelia. Annu Rev Physiol 46:497–515

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B (2001) Hans Ussing, experiments and models. J Membr Biol 184:203–210

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B, van Driessche W (1977) Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science 195:292–294

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu K (2013) The transporters of intestinal tract and techniques applied to evaluate interactions between drugs and transporters. Asian J Pharmac Sci 8:151–158

    Article  CAS  Google Scholar 

  • Loonen AJN, Knoers NVAM, Van Os CH, Deen PMT (2008) Aquaporin 2 mutations in nephrogenic diabetes insipidus. Sem Nephrol 28:252–265

    Article  CAS  Google Scholar 

  • Lorenz JN (2012) Micropuncture of the kidney: a primer on techniques. Comp Physiol 2:621–637

    Google Scholar 

  • Lund EJ (1926) the electrical polarity of Obelia and frog’s skin and its reversible inhibition by cyanide, ether, and chloroform. J Exptl Zool 44:383–396

    Article  CAS  Google Scholar 

  • Lund EJ, Stapp P (1947) Use of the iodine coulometer in the measurement of bioelectrical energy and the efficiency of the bioelectrical process. In: Lund EJ (ed) Bioelectric fields and growth. University of Texas Press, Austin, TX, pp 235–280

    Google Scholar 

  • Lyon GM (1949) Radioisotopes in biology and medicine. Am Biology Teacher 11:70–75

    Article  Google Scholar 

  • Matsushita K, Golgotiu K, Orton DJ, Smith RD, Rodland JD, Piehowski PD, Hutchens MP (2018) Micropuncture of Bowman’s space in mice facilitated by 2 photon microscopy. J Vis Exp 140:e58206. https://doi.org/10.3791/58206

    Article  CAS  Google Scholar 

  • Matteucci MM, Lima A (1845) Mémoire sur l’endosmose. Annales de chimie et de physique XIII:63–86

    Google Scholar 

  • Meyer KH, Bernfeld P (1946) The potentiometric analysis of membrane structure and its application to living animal membranes. J Gen Physiol 29:353–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RT (2011) Genetic disorders of NaCl transport in the distal convoluted tubule. Nephron Physiol 118:15–21

    Article  CAS  Google Scholar 

  • Miller TG, Abbott WO (1934) Intestinal intubation: a practical technique. Am J Med Sci 187:595–598

    Article  Google Scholar 

  • Miller D, Crane RK (1961) The digestive function of the epithelium of the small intestine. Biochim Biophys Acta 11:293–298

    Article  Google Scholar 

  • Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262(56–61):64–65

    Google Scholar 

  • Mullis KB (1998) Dancing in the mind field. Pantheon, New York, 222pp. ISBN: 978-0-679-44255-4

    Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth Enzymol 155:335–350

    Article  CAS  Google Scholar 

  • Mullis K, Faloona F, Sccharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    Article  CAS  PubMed  Google Scholar 

  • Mullis KB, Ferré F, Gibbs RA (1994) The polymerase chain reaction. Springer, New York. ISBN: 978-0-8176-3750-7. https://doi.org/10.1007/978-1-4612-0257-8

  • Murer H, Gmaj P (1986) Transport studies in plasma membrane vesicles isolated from renal cortex. Kidney Int 30:171–186

    Article  CAS  PubMed  Google Scholar 

  • Murer H, Kinne R (1980) The use of isolated membrane vesicles to study epithelial transport processes. J Membr Biol 55:81–95

    Article  CAS  PubMed  Google Scholar 

  • Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J 154:597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mushegian S (2018) Simulations might speed drug target discovery. Asbmbtoday 17:10. https://www.asbmb.org/asbmb-today/science/050118/jbc-simulations-might-speed-drug-target-discovery

  • Myers WG (1976) Becquerel’s discovery of radioactivity in 1896. J Nucl Med 17:579–572

    CAS  PubMed  Google Scholar 

  • Nakano D, Nishiyama A (2016) Multiphoton imaging of kidney pathophysiology. J Pharmacol Sci 132:1–5. https://doi.org/10.1016/j.jphs.2016.08.001

  • Niese S (2006) George de Hevesy (1885-1966), Founder of radioanalytical chemistry. Czechoslovak J Phys 5(suppl D):D3–D11

    Google Scholar 

  • Nitske RW (1971) The life of Wilhem Conrad Röntgen, Discoverer of the X-Ray. University of Arizona Press, Tucson, AZ, 355pp. ISBN: 10:0816502595

    Google Scholar 

  • Palmer LG, Andersen OS (2008) The two-membrane model of epithelial transport: Koefoed-Johnsen and Ussing (1958). J Gen Physiol 132:607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panet A, Khorana HG (1974) Studies on polynucleotides. The linkage of deoxyribopolynucleotide templates to cellulose and its use in their replication. J Biol Chem 249:5213–5221

    CAS  PubMed  Google Scholar 

  • Peti-Peterdi J, Kidokoro K, Riquier-Brison A (2015) Novel in vivo techniques to visualize kidney anatomy and function. Kidney Int 88:44–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Pook MA, Wrong O, Wooding C, Norden AGW, Feest TG, Thakker R (1993) Dent’s disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum Mol Genet 2:2129–2134

    Article  CAS  PubMed  Google Scholar 

  • Popják G (1948) The use of isotopes in biology. Sci Progr 36:239–261

    PubMed  Google Scholar 

  • Posner R (1970) Reception of Röntgen’s discovery in Britain and U.S.A. Brit Med J 4:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinow P (1996) Making PCR: a story of biotechnology. University of Chicago Press, Chicago, IL, 190pp. ISBN: 0-226-70146-8

    Google Scholar 

  • Rapetti-Mauss R, Lacoste C, Picard V, Guitton C, Lombard E, Loosveld M, Nivaggioni V, Dasilva N, Salgado D, Desvignes JP, Béroud C, Viout P, Bernard M, Soriani O, Lacroze V, Feneant-Thibault M, Thuret I, Guizouam H, Badens C (2015) A mutation in the Gardos channel is associated with hereditary xerocytosis. Blood 126:1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Reeves A (ed) (2017) In vitro mutagenesis methods and protocols. Humana, 511pp. Hardcover book ISBN: 978-1-4939-6470-3, eBook ISBN: 978-1-4939-6472-7

    Google Scholar 

  • Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K, Bandulik S, Sterner C, Tegtmeier I, Penton D, Baukrowitz T, Hulton SA, Witzgall R, Ben-Zeev B, Howie AJ, Kleta R, Bockenhauer D, Warth R (2010) KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acd Sci USA 107:14490–14495

    Article  CAS  Google Scholar 

  • Reid EW (1890) Osmosis experiments with living and dead membranes. J Physiol 11(4–5):312–400.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid EW (1892a) Report on experiments upon “absorption without osmosis”. Br Med J 13:1(1624):323–326

    Google Scholar 

  • Reid EW (1892b) Preliminary report on experiments upon intestinal absorption without osmosis. Br Med J 1(1639):1133–1134

    Google Scholar 

  • Reid EW (1901) Transport of fluid by certain epithelia. J Physiol 26:436–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards AN, Walker AM (1936) Methods of collecting fluid from known regions of the renal tubules of Amphibia and of perfusing the lumen of a single tubule. Am J Physiol 118:111–120

    Article  Google Scholar 

  • Robertson CR, Deen WM, Troy JL, Brenner BM (1972) Dynamics of glomerular ultrafiltration in the rat. 3. Hemodynamics and autoregulation. Am J Physiol 223:1191–1200

    Article  CAS  PubMed  Google Scholar 

  • Röntgen W (1895) Ueber eine Art von Strahlen. ‘Vorläufige Mitteilung’. In: Aus den Sitzungsberichten der Würzbuger Physik.-medic. Gesellschaft Würzburg, pp 137–147

    Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich H, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich H (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  • Sandoval RM, Molitoris BA (2017) Intravital multiphoton microscopy as a tool for studying renal physiology and pathophysiology. Methods 128:30–32

    Article  CAS  Google Scholar 

  • Sands JM (2004) Micropuncture: unlocking the secrets of renal function. Am J Physiol Renal Physiol 287:F866–F867

    Article  CAS  PubMed  Google Scholar 

  • Sanford PA (1982) Digestive system physiology, Physiological principles in medicine series. Edward Arnold, London

    Google Scholar 

  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchinson CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695

    Article  CAS  PubMed  Google Scholar 

  • Sanjuán R (2010) Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies. Philos Trans R Soc B 365:1975–1982

    Article  CAS  Google Scholar 

  • Schmitz J, Preiser H, Maestracci D, Ghosh BK, Cerda JJ, Crane RK (1973) Purification of the human intestinal brush border membrane. Biochim Biophys Acta 323:98–112

    Article  CAS  PubMed  Google Scholar 

  • Scholl UI, Choi M, Liu T, Ramaekers VT, Hausler MG, Grimmer J, Tobe SW, Farhi A, Nelson-Williams C, Lifton RP (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 106:5842–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz SG (1998) A century of (epithelial) transport physiology: from vitalism to molecular cloning. Am J Physiol Cell Physiol 274:C13–C23

    Article  CAS  Google Scholar 

  • Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW, Canessa CM, Rossier BC, Lifton RP (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the β subunit of the epithelial sodium channel. Cell 79:407–414

    Article  CAS  PubMed  Google Scholar 

  • Sinsheimer R (1989) The Santa Cruz workshop, May 1985. Genomics 5:954–956

    Article  CAS  PubMed  Google Scholar 

  • Smith M (1985) In vitro mutagenesis. Ann Rev Genet 19:423–462

    Article  CAS  PubMed  Google Scholar 

  • Smith M (1993) Synthetic DNA and biology. https://www.nobelprize.org/prizes/chemistry/1993/smith/lecture/

  • Smith M, Khorana HG (1958) Nucleoside polyphosphates. VI. An improved and general method for the synthesis of ribo- and deoxyribonuleoside 5′ triphosphates. J Am Chem Soc 80:1141–1145

    Google Scholar 

  • Smith M, Khorana HG (1959) Specific synthesis of the C5′-C3′ inter-ribonucleotide linkage: the synthesis of uridylyl-(5′→3′)-uridine. J Am Chem Soc 81:2911–2912

    Google Scholar 

  • Smith M, Drummond GI, Khorana HG (1961) Cyclic phosphates. IV. Ribonucleoside-3′,5′ cyclic phosphate. A general method of synthesis and some properties. J Am Chem Soc 83:698–706

    Google Scholar 

  • Smith M, Rammler DH, Goldberg IH, Khorana HG (1962) Studies on polynucleotides. XIV. Specific synthesis of the C3′-C5′ Inter-ribonucleotide linkage: syntheses of uridylyl-(3′→5′)-uridine and uridylyl-(3′→5′)-adenosine. J Am Chem Soc 84:430–440

    Google Scholar 

  • Sols A, Polz F (1947) A new method for the study of intestinal absorption. Rev Espan Fisiol 3:207–211

    CAS  Google Scholar 

  • Stapp P (1941) Efficiency of electrical energy production by surviving frog skin, measured by iodine coulometer. Exp Biol Med (Maywood) 46:382–384

    Article  Google Scholar 

  • Stevens CF (1977) Study of membrane permeability changes by fluctuation analysis. Nature 270:391–396

    Article  CAS  PubMed  Google Scholar 

  • Stevens BR, Kaunitz JD, Wright EM (1984) Intestinal transport of amino acids and sugars: advances using membrane vesicles. Ann Rev Physiol 46:417–433

    Article  CAS  Google Scholar 

  • Stockand DJ, Vallon V, Oritz P (2012) In vivo and ex vivo analysis of tubule function. Comp Physiol 2:2495–2525

    Google Scholar 

  • Tanner GA, Sandoval RM, Molitoris BA, Bamburg JR, Ashworth SL (2005) Micropuncture gene delivery and intravital two-photon visualization of protein expression in rat kidney. Am J Physiol Renal Physiol 289:F638–F643

    Article  CAS  PubMed  Google Scholar 

  • Thiry L (1864) Über eine neue Methode, den Dünndarm zu isolieren Sitz Akad Wien, Math-Natur KI I 50:77–96

    Google Scholar 

  • Trower MK (ed) (1996) In vitro mutagenesis protocols. Methods in molecular biology 57. Humana, Mahwah, NJ, 408 pp. ISBN: 10:0896033325, eBook ISBN: 978-1-59259-544-0

    Google Scholar 

  • Tsui L-C (1992) Mutation and sequence variations detected in the cystic fibrosis transmembrane conductance regulator (CFTR) gene: a report from the cystic fibrosis genetic analysis consortium. Hum Mutat 1:197–203

    Article  CAS  PubMed  Google Scholar 

  • Urey HC (1925) The structure of the hydrogen molecule ion. Proc Natl Acad Sci USA 11:618–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urey HC (1933) The separation and properties of the isotopes of hydrogen. Science 78:566–571

    Article  CAS  PubMed  Google Scholar 

  • Urey HC (1935) Some thermodynamic properties of hydrogen and deuterium. Nobel Prize in Chemistry 1934 Lecture. www.nobelprize.org/prizes/chemistry/1934/urey/lecture

  • Ussing HH (1938a) Use of amino acids containing deuterium to follow protein production in the organism. Nature 142:399

    Article  CAS  Google Scholar 

  • Ussing HH (1938b) The exchange of H and D atoms between water and protein in vivo and in vitro. Skand Arch Physiol 78:225–241

    Article  CAS  Google Scholar 

  • Ussing HH (1941) The rate of protein renewal in mice and rats studied by means of heavy hydrogen. Acta Physiol Scand 2:209–221

    Article  CAS  Google Scholar 

  • Ussing HH (1943a) On the partition of certain amino acids between blood and tissues. Acta Physiol Scand 6:222–232

    Article  CAS  Google Scholar 

  • Ussing HH (1943b) The nature of the amino nitrogen of red corpuscles. Acta Physiol Scand 5:335–351

    Article  CAS  Google Scholar 

  • Ussing HH (1945a) The reabsorption of glycine and other amino acids in the kidney of man. Acta Physiol Scand 9:193–212

    Article  CAS  Google Scholar 

  • Ussing HH (1945b) The determination of chloroform in tissues and blood. Acta Physiol Scand 9:214–220

    Article  CAS  Google Scholar 

  • Ussing HH (1946) Amino acids and related compounds in the haemolymph of Oryctes nasicornis and Melolontha vulgaris. Acta Physiol Scand 11:61–84

    Article  CAS  Google Scholar 

  • Ussing HH (1947) Interpretation of the exchange of radio-sodium in the isolated muscle. Nature 160:262–263

    Article  CAS  Google Scholar 

  • Ussing HH (1949a) The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol Scand 17:1–37

    Google Scholar 

  • Ussing HH (1949b) The distinction by means of tracers between active transport and diffusion. Acta Physiol Scand 19:43–56

    Article  CAS  Google Scholar 

  • Ussing HH (1980) Life with tracers. Ann Rev Physiol 42:1–16

    Article  CAS  Google Scholar 

  • Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in the short- circuited isolated frog skin. Acta Physiol Scand 23:110–127

    Article  CAS  PubMed  Google Scholar 

  • Ussing HH, Erlij D, Lassen H (1974) Transport pathways in biological membranes. Ann Rev Physiol 36:17–79

    Article  CAS  Google Scholar 

  • Vallon V (2009) Micropuncturing the nephron. Pflügers Arch 458:189–201

    Article  CAS  PubMed  Google Scholar 

  • van Driessche W, Gögelein H (1980) Attenuation of current and voltage noise signals recorded from epithelia. J Theor Biol 86:629–648

    Article  PubMed  Google Scholar 

  • van Driessche W, Lindemann B (1978) Low-noise amplification of voltage and current fluctuations arising in epithelia. Rev Sci Instrum 49:53–57

    PubMed  Google Scholar 

  • van Driessche W, Zeiske W (1985) Ionic channels in epithelial cell membranes. Physiol Rev 65:833–903

    Article  PubMed  Google Scholar 

  • Verveen AA, Derksen HE (1965) Fluctuations in membrane potential of axons and the problems of coding. Kybernetik 4:152–160

    Google Scholar 

  • Verzár F, McDougall EJ (1936) Absorption from the intestine. Longmans, Green, London

    Google Scholar 

  • Walker AM, Hudson CL (1936) The reabsorption of glucose from the renal tubule in Amphibia and the action of phlorhizin upon it. Am J Physiol 118:130–143

    Article  Google Scholar 

  • Walker AM, Oliver J (1941) Methods for the collection of fluid from single glomeruli and tubules of the mammalian kidney. Am J Physiol 134:562–579

    Article  CAS  Google Scholar 

  • Walker AM, Bott PA, Oliver J, MacDowell MC (1941) The collection and analysis of fluid from single nephrons of the mammalian kidney. Am J Physiol 134:580–595

    Article  CAS  Google Scholar 

  • Warth R, Barriere H, Meneton P, Bloch M, Thomas J, Tauc M, Heitzmann D, Romeo E, Verrey F, Mengual R, Guy N, Vendahhou S, Lesage F, Pouljeol P, Barhanin J (2004) Proximal renal tubular acidosis in TASK2 K+ channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport. Proc Natl Acad Sci USA 101:8215–8220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washburn EW, Urey HC (1932) Concentration of the H2 isotope of hydrogen by fractional electrolysis of water. Proc Natl Acad Sci USA 18:496–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Wearn JT, Richards AN (1924) Observations on the composition of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Am J Physiol 71:209–227

    Article  CAS  Google Scholar 

  • Welling PA, Ho K (2009) A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 297:F849–F863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MB, Amos J, Hsu JMC, Gerrard B, Finn P, Dean M (1990) A frame-shift mutation in the cystic fibrosis gene. Nature 344:665–667

    Article  CAS  PubMed  Google Scholar 

  • Williams DM, Lopes CMB, Rosenhouse-Dantsker A, Connelly HL, Matavel A, O-Uchi J, McBeath E, Gray DA (2010) Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome. J Am Soc Nephrol 21:2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson TH (1956) A modified method for study of intestinal absorption in vitro. J Appl Physiol 9:137–149

    Article  CAS  PubMed  Google Scholar 

  • Wilson TH (1962) Intestinal absorption. W.B. Saunders, Philadelphia. Chapter 2, pp 20–39

    Google Scholar 

  • Wilson TH, Wiseman G (1954) The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol 123:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windhager EE (1987) Micropuncture and microperfusion. In: Gottschalk CW, Berliner RW, Giebisch GH (eds) Renal physiology. People and ideas. American Physiological Society, Bethesda, pp 101–129

    Chapter  Google Scholar 

  • Wiseman G (1953) Absorption of amino-acids using an in vitro technique. J Physiol 120:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiseman G (1961) Sac of everted intestine: technic for study of intestinal absorption in vitro. In Quastel JH (ed) Methods of medical research, vol 9. Year Book Medical, Chicago, IL, pp 287–292.

    Google Scholar 

  • Zajac M, Dolowy K (2017) Measurement of ion fluxes across epithelia. Prog Biophys Mol Biol 127:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zoller MJ, Smith M (1982) Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res 10:6487–6500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoller MJ, Smith M (1984) Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3:479–488

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter is dedicated to the memory of Jared J. Grantham, MD (1936–2017) for his contributions to the isolated perfused tubule preparation and to his lifelong research work on polycystic kidney disease. Thanks to Chris Cheeseman for his insightful memories of his interactions with Wiseman. Many thanks to Moe Burg for his comments and his friendship over the years. A special thanks to Mark Knepper for the photo of his isolated perfused tubule rig (Fig. 1.8) and the discussions of the isolated perfused tubule technique. Many thanks to Erik Larsen who provided impeccable historical insight and details on various aspects of Sect. 1.4 on Hans Ussing and other sections of this chapter. Thanks to Dee Silverthorn for her enlightening comments and editing of an earlier version of this chapter and the information about the transporter databases provided in Sect. 1.10. Additionally, I thank Dee for her ‘kick starting’ the now two editions of this APS/Springer-Verlag (now APS/Springer-Nature) book series back in 2013. Thanks to John Hughes for generating the digital images for Figs. 1.9, 1.10, and 1.11. Thanks to the Department of Physiology and the School of Biomedical Sciences at the University of Otago for continued research support for many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk L. Hamilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamilton, K.L. (2020). Techniques of Epithelial Transport Physiology. In: Hamilton, K.L., Devor, D.C. (eds) Basic Epithelial Ion Transport Principles and Function. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-52780-8_1

Download citation

Publish with us

Policies and ethics