Skip to main content

Inherited Disorders of Renal Magnesium Handling

  • Reference work entry
  • First Online:
  • 2891 Accesses

Abstract

Magnesium (Mg2+) depletion usually occurs secondary to another disease process or to a therapeutic agent. During infancy and childhood, a substantial proportion of patients receiving medical attention for signs of hypomagnesemia is affected by inherited renal disorders associated with Mg2+ wasting. In these disorders, hypomagnesemia either may be a leading symptom or may be part of a complex phenotype resulting from tubular dysfunction, as detailed below. Advances in molecular genetics of hereditary hypomagnesemia substantiated the role of a variety of genes and their encoded proteins in human epithelial Mg2+ transport, and helped to characterize different clinical subtypes of hereditary Mg2+-wasting. A careful clinical and biochemical assessment allows to distinguish the different disease entities in most cases, even when there is a considerable overlap in the phenotypic characteristics.

This is a preview of subscription content, log in via an institution.

References

  1. Fine KD, Santa Ana CA, Porter JL, et al. Intestinal absorption of magnesium from food and supplements. J Clin Invest. 1991;88(2):396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Quamme GA. Recent developments in intestinal magnesium absorption. Curr Opin Gastroenterol. 2008;24(2):230–5.

    Article  CAS  PubMed  Google Scholar 

  3. de Rouffignac C, Quamme G. Renal magnesium handling and its hormonal control. Physiol Rev. 1994;74(2):305–22.

    Article  PubMed  Google Scholar 

  4. Quamme GA. Renal magnesium handling: new insights in understanding old problems. Kidney Int. 1997;52(5):1180–95.

    Article  CAS  PubMed  Google Scholar 

  5. Simon DB, Lu Y, Choate KA, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285(5424):103–6.

    Article  CAS  PubMed  Google Scholar 

  6. Konrad M, Schaller A, Seelow D, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006;79(5):949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Michelis MF, Drash AL, Linarelli LG, et al. Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis. (Evaluation of the pathophysiological role of parathyroid hormone). Metabolism. 1972;21(10):905–20.

    Article  CAS  PubMed  Google Scholar 

  8. Manz F, Schärer K, Janka P, et al. Renal magnesium wasting, incomplete tubular acidosis, hypercalciuria and nephrocalcinosis in siblings. Eur J Pediatr. 1978;128(2):67–79.

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M. Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol. 1987;1(3):465–72.

    Article  CAS  PubMed  Google Scholar 

  10. Rodríguez-Soriano J, Vallo A. Pathophysiology of the renal acidification defect present in the syndrome of familial hypomagnesaemia-hypercalciuria. Pediatr Nephrol. 1994;8(4):431–5.

    Article  PubMed  Google Scholar 

  11. Praga M, Vara J, González-Parra E, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int. 1995;47(5):1419–25.

    Article  CAS  PubMed  Google Scholar 

  12. Benigno V, Canonica CS, Bettinelli A, et al. Hypomagnesaemia-hypercalciuria-nephrocalcinosis: a report of nine cases and a review. Nephrol Dial Transplant. 2000;15(5):605–10.

    Article  CAS  PubMed  Google Scholar 

  13. Weber S, Schneider L, Peters M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001;12(9):1872–81.

    Article  CAS  PubMed  Google Scholar 

  14. Konrad M, Hou J, Weber S, et al. CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2008;19(1):171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Godron A, Harambat J, Boccio V, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol. 2012;7(5):801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Claverie-Martin F, Garcia-Nieto V, Loris C, et al. Claudin-19 mutations and clinical phenotype in Spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. PLoS One. 2013;8(1):e53151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sikora P, Zaniew M, Haisch L, et al. Retrospective cohort study of familial hypomagnesaemia with hypercalciuria and nephrocalcinosis due to CLDN16 mutations. Nephrol Dial Transplant. 2015;30(4):636–44.

    Article  CAS  PubMed  Google Scholar 

  18. Blanchard A, Jeunemaitre X, Coudol P, et al. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int. 2001;59(6):2206–15.

    Article  CAS  PubMed  Google Scholar 

  19. Müller D, Kausalya PJ, Claverie-Martin F, et al. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet. 2003;73(6):1293–301.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hou J, Renigunta A, Konrad M, et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest. 2008;118(2):619–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zimmermann B, Plank C, Konrad M, et al. Hydrochlorothiazide in CLDN16 mutation. Nephrol Dial Transplant. 2006;21(8):2127–32.

    Article  CAS  PubMed  Google Scholar 

  22. Bockenhauer D, Feather S, Stanescu HC, et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med. 2009;360(19):1960–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scholl UI, Choi M, Liu T, et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A. 2009;106(14):5842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scholl UI, Dave HB, Lu M, et al. SeSAME/EAST syndrome – phenotypic variability and delayed activity of the distal convoluted tubule. Pediatr Nephrol. 2012;27(11):2081–90.

    Article  PubMed  Google Scholar 

  25. Zhang C, Wang L, Zhang J, et al. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci U S A. 2014;111(32):11864–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meij IC, Koenderink JB, van Bokhoven H, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat Genet. 2000;26(3):265–6.

    Article  CAS  PubMed  Google Scholar 

  27. Geven WB, Monnens LA, Willems HL, et al. Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int. 1987;31(5):1140–4.

    Article  CAS  PubMed  Google Scholar 

  28. Meij IC, Saar K, van den Heuvel LP, et al. Hereditary isolated renal magnesium loss maps to chromosome 11q23. Am J Hum Genet. 1999;64(1):180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Baaij JH, Dorresteijn EM, Hennekam EA, et al. Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia. Nephrol Dial Transplant. 2015;30(6):952–7.

    Article  PubMed  Google Scholar 

  30. Arystarkhova E, Wetzel RK, Sweadner KJ. Distribution and oligomeric association of splice forms of Na(+)-K(+)-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol. 2002;282(3):F393–407.

    Article  CAS  PubMed  Google Scholar 

  31. Arystarkhova E, Donnet C, Asinovski NK, et al. Differential regulation of renal Na,K-ATPase by splice variants of the gamma subunit. J Biol Chem. 2002;277(12):10162–72.

    Article  CAS  PubMed  Google Scholar 

  32. Meij IC, van den Heuvel LP, Hemmes S, et al. Exclusion of mutations in FXYD2, CLDN16 and SLC12A3 in two families with primary renal Mg2+ loss. Nephrol Dial Transplant. 2003;18(3):512–6.

    Article  CAS  PubMed  Google Scholar 

  33. Glaudemans B, van der Wijst J, Scola RH, et al. A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest. 2009;119(4):936–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van der Wijst J, Glaudemans B, Venselaar H, et al. Functional analysis of the Kv1.1 N255D mutation associated with autosomal dominant hypomagnesemia. J Biol Chem. 2010;285(1):171–8.

    Article  PubMed  Google Scholar 

  35. Geven WB, Monnens LA, Willems JL, et al. Isolated autosomal recessive renal magnesium loss in two sisters. Clin Genet. 1987;32(6):398–402.

    Article  CAS  PubMed  Google Scholar 

  36. Groenestege WM, Thébault S, van der Wijst J, et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007;117(8):2260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paunier L, Radde IC, Kooh SW, et al. Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics. 1968;41(2):385–402.

    CAS  PubMed  Google Scholar 

  38. Anast CS, Mohs JM, Kaplan SL, et al. Evidence for parathyroid failure in magnesium deficiency. Science. 1972;177(4049):606–8.

    Article  CAS  PubMed  Google Scholar 

  39. Quitterer U, Hoffmann M, Freichel M, et al. Paradoxical block of parathormone secretion is mediated by increased activity of G alpha subunits. J Biol Chem. 2001;276(9):6763–9.

    Article  CAS  PubMed  Google Scholar 

  40. Shalev H, Phillip M, Galil A, et al. Clinical  presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child. 1998;78(2):127–30.

    Google Scholar 

  41. Lombeck I, Ritzl F, Schnippering HG, et al. Primary hypomagnesemia. I. Absorption studies. Z Kinderheilkd. 1975;118(4):249–58.

    Article  CAS  PubMed  Google Scholar 

  42. Milla PJ, Aggett PJ, Wolff OH, et al. Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. Gut. 1979;20(11):1028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matzkin H, Lotan D, Boichis H. Primary hypomagnesemia with a probable double magnesium transport defect. Nephron. 1989;52(1):83–6.

    Article  CAS  PubMed  Google Scholar 

  44. Schlingmann KP, Weber S, Peters M, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002;31(2):166–70.

    Article  CAS  PubMed  Google Scholar 

  45. Walder RY, Landau D, Meyer P, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002;31(2):171–4.

    Article  CAS  PubMed  Google Scholar 

  46. Jalkanen R, Pronicka E, Tyynismaa H, et al. Genetic background of HSH in three Polish families and a patient with an X;9 translocation. Eur J Hum Genet. 2006;14(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  47. Guran T, Akcay T, Bereket A, et al. Clinical and molecular characterization of Turkish patients with familial hypomagnesaemia: novel mutations in TRPM6 and CLDN16 genes. Nephrol Dial Transplant. 2012;27(2):667–73.

    Article  CAS  PubMed  Google Scholar 

  48. Lainez S, Schlingmann KP, van der Wijst J, et al. New TRPM6 missense mutations linked to hypomagnesemia with secondary hypocalcemia. Eur J Hum Genet. 2014;22:497–504.

    Google Scholar 

  49. Chubanov V, Schlingmann KP, Wäring J, et al. Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J Biol Chem. 2007;282(10):7656–67.

    Article  CAS  PubMed  Google Scholar 

  50. Cole DE, Kooh SW, Vieth R. Primary infantile hypomagnesaemia: outcome after 21 years and treatment with continuous nocturnal nasogastric magnesium infusion. Eur J Pediatr. 2000;159(1–2):38–43.

    Article  CAS  PubMed  Google Scholar 

  51. Chubanov V, Waldegger S, Mederos y Schnitzler M, et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A. 2004;101(9):2894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmitz C, Dorovkov MV, Zhao X, et al. The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem. 2005;280(45):37763–71.

    Article  CAS  PubMed  Google Scholar 

  53. Voets T, Nilius B, Hoefs S, et al. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem. 2004;279(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  54. Stuiver M, Lainez S, Will C, et al. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am J Hum Genet. 2011;88(3):333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arjona FJ, de Baaij JH, Schlingmann KP, et al. CNNM2 mutations cause impaired brain development and seizures in patients with hypomagnesemia. PLoS Genet. 2014;10(4):e1004267.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Accogli A, Scala M, Calcagno A, et al. CNNM2 homozygous mutations cause severe refractory hypomagnesemia, epileptic encephalopathy and brain malformations. Eur J Med Genet. 2019;62(3):198–203.

    Article  PubMed  Google Scholar 

  57. Franken GAC, Müller D, Mignot C, et al. Phenotypic and genetic spectrum of patients with heterozygous mutations in Cyclin M2 (CNNM2). Hum Mutat. 2021;42:473–86.

    Google Scholar 

  58. Wang CY, Shi JD, Yang P, et al. Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene. 2003;306:37–44.

    Article  CAS  PubMed  Google Scholar 

  59. de Baaij JH, Stuiver M, Meij IC, et al. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J Biol Chem. 2012;287(17):13644–55.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goytain A, Quamme GA. Functional characterization of ACDP2 (ancient conserved domain protein), a divalent metal transporter. Physiol Genomics. 2005;22(3):382–9.

    Article  CAS  PubMed  Google Scholar 

  61. Schlingmann KP, Bandulik S, Mammen C, et al. Germline De Novo mutations in ATP1A1 cause renal hypomagnesemia, refractory seizures, and intellectual disability. Am J Hum Genet. 2018;103(5):808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lucking K, Nielsen JM, Pedersen PA, et al. Na-K-ATPase isoform (alpha 3, alpha 2, alpha 1) abundance in rat kidney estimated by competitive RT-PCR and ouabain binding. Am J Phys. 1996;271(2 Pt 2):F253–60.

    CAS  Google Scholar 

  63. Munzer JS, Daly SE, Jewell-Motz EA, et al. Tissue- and isoform-specific kinetic behavior of the Na,K-ATPase. J Biol Chem. 1994;269(24):16668–76.

    Article  CAS  PubMed  Google Scholar 

  64. Lassuthova P, Rebelo AP, Ravenscroft G, et al. Mutations in ATP1A1 cause dominant Charcot-Marie-Tooth Type 2. Am J Hum Genet. 2018;102(3):505–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stregapede F, Travaglini L, Rebelo AP, et al. Hereditary spastic paraplegia is a novel phenotype for germline de novo ATP1A1 mutation. Clin Genet. 2020;97(3):521–6.

    Article  CAS  PubMed  Google Scholar 

  66. Horikawa Y, Iwasaki N, Hara M, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17(4):384–5.

    Article  CAS  PubMed  Google Scholar 

  67. Heidet L, Decramer S, Pawtowski A, et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol. 2010;5(6):1079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lindner TH, Njolstad PR, Horikawa Y, et al. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet. 1999;8(11):2001–8.

    Article  CAS  PubMed  Google Scholar 

  69. Faguer S, Decramer S, Chassaing N, et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int. 2011;80(7):768–76.

    Article  CAS  PubMed  Google Scholar 

  70. Adalat S, Woolf AS, Johnstone KA, et al. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2009;20(5):1123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Adalat S, Hayes WN, Bryant WA, et al. HNF1B mutations are associated with a Gitelman-like tubulopathy that develops during childhood. Kidney Int Rep. 2019;4(9):1304–11.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Raaijmakers A, Corveleyn A, Devriendt K, et al. Criteria for HNF1B analysis in patients with congenital abnormalities of kidney and urinary tract. Nephrol Dial Transplant. 2015;30(5):835–42.

    Article  CAS  PubMed  Google Scholar 

  73. Kołbuc M, Leßmeier L, Salamon-Słowińska D, et al. Hypomagnesemia is underestimated in children with HNF1B mutations. Pediatr Nephrol. 2020;35(10):1877–86.

    Article  PubMed  Google Scholar 

  74. Ferre S, de Baaij JH, Ferreira P, et al. Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2014;25(3):574–86.

    Article  CAS  PubMed  Google Scholar 

  75. Wilson FH, Hariri A, Farhi A, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306(5699):1190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Agus ZS. Hypomagnesemia. J Am Soc Nephrol. 1999;10(7):1616–22.

    Article  CAS  PubMed  Google Scholar 

  77. Schlingmann KP, Konrad M, Seyberth HW. Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol. 2004;19(1):13–25.

    Article  PubMed  Google Scholar 

  78. Reed M. Medications. In: Behrman R, Kliegman R, Jenson H, editors. Textbook of pediatrics. 16th ed. Philadelphia/Toronto/London: WB Saunders; 2000.

    Google Scholar 

  79. Ranade VV, Somberg JC. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther. 2001;8(5):345–57.

    Article  CAS  PubMed  Google Scholar 

  80. Ryan MP. Magnesium and potassium-sparing diuretics. Magnesium. 1986;5(5–6):282–92.

    CAS  PubMed  Google Scholar 

  81. Netzer T, Knauf H, Mutschler E. Modulation of electrolyte excretion by potassium retaining diuretics. Eur Heart J. 1992;13(Suppl G):22–7.

    Article  PubMed  Google Scholar 

  82. Bundy JT, Connito D, Mahoney MD, et al. Treatment of idiopathic renal magnesium wasting with amiloride. Am J Nephrol. 1995;15(1):75–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Konrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Konrad, M., Schlingmann, K.P. (2022). Inherited Disorders of Renal Magnesium Handling. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_109

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_109

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics