Skip to main content

Plant Tolerance Mechanisms to Soil Salinity Contribute to the Expansion of Agriculture and Livestock Production in Argentina

  • Chapter
  • First Online:
Saline and Alkaline Soils in Latin America

Abstract

This chapter addresses salt tolerance mechanisms in crops and woody species cultivated in Argentina, highlighting the contribution of local research to these topics. Work on forages and woody species represents approximately half of this research that has been published by Argentine authors in international journals. Basic research on plant salinity mounts to only 12% of the total, indicating that it still does not attract sufficient consideration among researchers. Among forage plants, attention in this chapter is focused on Rhodes grass (Chloris gayana Kunth), while in woody perennials, salt tolerance mechanisms in Prosopis, which have been extensively investigated locally, are reported. Despite the importance of soybean in Argentine economy, as well as that of other crops such as maize, wheat, sunflower, relatively little research attention has been paid to salinity issues in these major field crops. This situation may reflect the fact that they are mostly cultivated in non-saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel GH, MacKenzie AJ (1964) Salt tolerance of soybean varieties (Glycine max L. Merrill) during germination and later growth. Crop Sci 4(2):157–161

    Google Scholar 

  • Aiazzi MT, Carpane PD, Di Rienzo JA, Argüello JA (2002) Effects of salinity and temperature on the germination and early seedling growth of Atriplex cordobensis Gandoger et Stuckert (Chenopodiaceae). Seed Sci Technol 30(2):329–338

    Google Scholar 

  • Aiazzi MT, Carpane PD, Argüello JA, Piotto B (2004) Salt tolerance at the germination stage of Atriplex cordobensis Gandoger et Stuckert (Chenopodiaceae) from different provenances. Seed Sci Technol 32(1):43–52

    Article  Google Scholar 

  • Aiazzi MT, Di Rienzio JA, Sosa L (2009) Effects of different salts on the germination and early seedling growth of Atriplex cordobensis Gandoger et Stuckert (Chenopodiaceae). Seed Sci Technol 37(1):17–24

    Article  Google Scholar 

  • Aimetta MB, Muñoz SA, Bustos D, Davidenco V, Cazorla CR, Galarza CM, Salvagiotti F (2020) Cuantificación del uso agrícola de suelos con limitantes salinas y sódicas mediante el índice NDVI. Cienc. del suelo 38 (1):174-186

    Google Scholar 

  • Allen JA, Chambers JL, Stine M (1994) Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiol 14:843–853

    Article  Google Scholar 

  • Antonelli CJ, Calzadilla PI, Escaray FJ, Babuin MF, Campestre MP, Rocco R, Bordenave CD, Perea García A, Nieva AS, Llames ME (2016) Lotus spp: biotechnological strategies to improve the bioeconomy of lowlands in the Salado River Basin (Argentina). AGROFOR Int J 1(2):43–53

    Google Scholar 

  • Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35(3):146–189

    Article  CAS  Google Scholar 

  • Balestrasse KB, Zilli CG, Tomaro ML (2008) Signal transduction pathways and haem oxygenase induction in soybean leaves subjected to salt stress. Redox Rep 13(6):255–262

    Article  CAS  Google Scholar 

  • Bernstein L, Hayward H (1958) Physiology of salt tolerance. Annu Rev Plant Physiol 9(1):25–46

    Article  CAS  Google Scholar 

  • Bogdan AV (1969) Rhodes grass. Herbage Abs 39:1–13

    Google Scholar 

  • Bustingorri C, Lavado R (2013) Soybean response and ion accumulation under sprinkler irrigation with sodium-rich saline water. J Plant Nutr 36(11):1743–1753

    Article  CAS  Google Scholar 

  • Campestre MP, Bordenave CD, Origone AC, Menéndez AB, Ruiz OA, Rodríguez AA, Maiale SJ (2011) Polyamine catabolism is involved in response to salt stress in soybean hypocotyls. J Plant Physiol 168(11):1234–1240

    Article  CAS  Google Scholar 

  • Cao D, Li Y, Liu B, Kong F, Tran LSP (2018) Adaptive mechanisms of soybean grown on salt-affected soils. Land Degrad Dev 29(4):1054–1064

    Article  Google Scholar 

  • Castelli SL, Grunberg K, Muñoz N, Griffa S, Colomba EL, Ribotta A, Biderbost E, Luna C (2010) Oxidative damage and antioxidant defenses as potential indicators of salt-tolerant Cenchrus ciliaris L. genotypes. Flora 205(9):622–626

    Google Scholar 

  • Cavagnaro JB, Ponce MT, Guzmán J, Cirrincione MA (2006) Argentinean cultivars of Vitis vinifera grow better than European ones when cultured in vitro under salinity. Biocell 30(1):1–7

    Article  Google Scholar 

  • Céccoli G, Senn ME, Bustos D, Ortega LI, Córdoba A, Vegetti A, Taleisnik E (2012) Genetic variability for responses to short- and long-term salt stress in vegetative sunflower plants. J Plant Nutr Soil Sci 175(6):882–890

    Article  CAS  Google Scholar 

  • Céccoli G, Ramos J, Pilatti V, Dellaferrera I, Tivano JC, Taleisnik E, Vegetti AC (2015) Salt glands in the Poaceae family and their relationship to salinity tolerance. Bot Rev 81(2):162–178

    Article  Google Scholar 

  • Chiacchiera S, Bertram N, Taleisnik E, Jobbágy E (2016) Effect of watertable depth and salinity on growth dynamics of Rhodes grass (Chloris gayana). Crop Pasture Sci 67(8):881–887

    Article  Google Scholar 

  • Choumert J, Phélinas P (2015) Determinants of agricultural land values in Argentina. Ecol Econ 110:134–140

    Article  Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defence system in soybean root nodules. Aust J Plant Physiol 25(6):665–671

    CAS  Google Scholar 

  • Córdoba A, García Seffino L, Moreno H, Arias C, Grunberg K, Zenoff A, Taleisnik E (2001) Characterization of the effect of high salinity on roots of Chloris gayana Kunth: carbohydrate and lipid accumulation and growth. Grass Forage Sci 56(2):162–168

    Article  Google Scholar 

  • Cramer GR (2002) Sodium-calcium interactions under salinity stress. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Springer, Dordrecht, pp 205–227

    Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137(3):807–818

    Article  CAS  Google Scholar 

  • de Luca M, García Seffino L, Grunberg K, Salgado M, Córdoba A, Luna C, Ortega L, Rodríguez AA, Castagnaro A, Taleisnik E (2001) Physiological causes for decreased productivity under high salinity in Boma, a tetraploid Chloris gayana cultivar. Aust J Agric Res 52(9):903–910

    Article  Google Scholar 

  • Dear B, Moore G, Hughes S (2003) Adaptation and potential contribution of temperate perennial legumes to the southern Australian wheatbelt: a review. Aust J Exp Agric 43(1):1–18

    Article  Google Scholar 

  • Escaray FJ, Menendez AB, Gárriz A, Pieckenstain FL, Estrella MJ, Castagno LN, Carrasco P, Sanjuán J, Ruiz OA (2012) Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci 182:121–133

    Article  CAS  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders. Agric Water Manage 78(1–2):15–24

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331

    Article  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–125

    Article  CAS  Google Scholar 

  • Gill HS, Abrol IP (1991) Salt affected soils, their afforestation and its ameliorating influence. Int Tree Crops J 6(4):239–260

    Article  Google Scholar 

  • Glenn EP, Jed BJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Google Scholar 

  • Gorgas J, Tassile J, Jarsún B, Zamora E, Bosnero H, Lovera E, Ravelo A (2003) Recursos naturales de la provincia de Córdoba, los suelos: nivel de reconocimiento escala 1: 500.000. Agencia Córdoba DAC y TSEM Dirección Ambiente, Instituto Nacional de Tecnología Agropecuaria INTA-Manfredi

    Google Scholar 

  • Grattan S, Grieve C (1998) Salinity–mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  Google Scholar 

  • Greenway H, Osmond CB (1972) Salt responses of enzymes from species differing in salt tolerance. Plant Physiol 49(2):256–259

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Griffa S, Ribotta A, López Colomba E, Tommasino E, Carloni E, Luna C, Grunberg K (2010) Evaluation seedling biomass and its components as selection criteria for improving salt tolerance in Buffel grass genotypes. Grass Forage Sci 65(3):358–361

    Article  Google Scholar 

  • Guevara J, Grünwaldt E (2012) Status of beef cattle production in Argentina over the last decade and its prospects. In: Javed K (ed) Livestock production. BoD–Books on Demand, pp 117–134

    Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol 51:463–499

    Article  CAS  Google Scholar 

  • Hoy NT, Gale MJ, Walsh KB (1994) Revegetation of a scalded saline discharge zone in central Queensland. 1. Selection of tree species and evaluation of an establishment technique. Aust J Exp Agric 34(6):765–776

    Google Scholar 

  • Huang RD (2017) Research progress on plant tolerance to soil salinity and alkalinity in sorghum. J Integr Agric 17(4):739–746

    Article  Google Scholar 

  • Jacobsen T, Adams RM (1958) Salt and silt in ancient Mesopotamian agriculture. Science 128(3334):1251–1258

    Article  CAS  Google Scholar 

  • James RA, von Caemmerer S, Condon AG, Zwart AB, Munns R (2008) Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Funct Plant Biol 35(2):111–123

    Article  CAS  Google Scholar 

  • Katerji N, Van Hoorn J, Hamdy A, Mastrorilli M (2003) Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric Water Manage 62(1):37–66

    Article  Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol 17(7):490. https://doi.org/10.1093/treephys/17.7.490

    Article  Google Scholar 

  • Lavado RS, Alconada M (1994) Soil properties behavior on grazed and ungrazed plots of a grassland sodic soil. Soil Technol 7(1):75–81

    Article  Google Scholar 

  • Lavado RS, Taboada MA (2017) Génesis y propiedades de los suelos halomórficos. In: Taleisnik E, Lavado R (eds) Ambientes salinos y alcalinos de la Argentina: recursos y aprovechamiento productivo. Orientación Gráfica Editora, Universidad Católica de Córdoba, Buenos Aires, pp 9–28

    Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nature Biotec 36(12):1160–1163

    Article  CAS  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Co 495(1):286–291

    Article  CAS  Google Scholar 

  • Liphschitz N, Shomer-Ilan A, Eshel A, Waisel Y (1974) Salt glands on leaves of Rhodes Grass (Chloris gayana Kth.). Ann Bot 38(2):459–462

    Google Scholar 

  • Llanes A, Masciarelli O, Luna V (2014) Growth responses to sulfate and chloride are related to different phytohormone profiles in the halophyte Prosopis strombulifera. Emir J Food Agric:1097–1113

    Google Scholar 

  • Llanes A, Pinamonti P, Iparraguirre J, Bertazza G, Luna V (2019) Abscisic acid alters carbohydrate accumulation induced by differential response to sodium salts in the halophyte Prosopis strombulifera. Plant Biosyst. https://doi.org/10.1080/11263504.2019.1610114

  • Luna C, García Seffino L, Arias C, Taleisnik E (2000) Oxidative stress indicators as selection tools for salt tolerance in Chloris gayana. Plant Breed 119(4):341–345

    Article  CAS  Google Scholar 

  • Luna DF, Aguirre A, Pittaro G, Bustos D, Ciacci B, Taleisnik E (2017) Nutrient deficiency and hypoxia as constraints to Panicum coloratum growth in alkaline soils. Grass Forage Sci 72(4):640–653

    Article  CAS  Google Scholar 

  • Luna DF, Saavedra Pons AB, Bustos D, Taleisnik E (2018) Early responses to Fe-deficiency distinguish Sorghum bicolor genotypes with contrasting alkalinity tolerance. Environ Exp Bot 155:165–176

    Article  CAS  Google Scholar 

  • Luo Q, Yu B, Liu Y (2005) Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol 162(9):1003–1012

    Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance. Current assessment. J Irrig Drain E-ASCE 102:115–134

    Article  Google Scholar 

  • Maas E, Poss J, Hoffman G (1986) Salinity sensitivity of sorghum at three growth stages. Irrigation Sci 7(1):1–11

    Article  Google Scholar 

  • Maiti R, de la Rosa-Ibarra M, Sandoval ND (1994) Genotypic variability in glossy sorghum lines for resistance to drought, salinity and temperature stress at the seedling stage. J Plant Physiol 143(2):241–244

    Article  Google Scholar 

  • Marinoni LDR, Zabala JM, Taleisnik EL, Schrauf GE, Richard GA, Tomas PA, Giavedoni JA, Pensiero JF (2019) Wild halophytic species as forage sources: key aspects for plant breeding. Grass Forage Sci 74(3):321–344

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Maughan P, Maroof MS, Buss G (1995) Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome 38(4):715–723

    Article  CAS  Google Scholar 

  • Meloni DA, Gulotta MR, Martínez CA, Oliva MA (2004) The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz J Plant Physiol 16(1):39–46

    Article  CAS  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  Google Scholar 

  • Morton MJ, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel–dissecting the genetics of salt tolerance. Plant J 97(1):148–163

    Article  CAS  Google Scholar 

  • Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, Anderson R, Olson SN, Rooney W (2014) Energy Sorghum—a genetic model for the design of C4 grass bioenergy crops. J Exp Bot 65(13):3479–3489

    Article  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253(1):201–218

    Article  CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  Google Scholar 

  • Muñoz N, Robert G, Melchiorre M, Racca R, Lascano R (2012) Saline and osmotic stress differentially affects apoplastic and intracellular reactive oxygen species production, curling and death of root hair during Glycine max L.-Bradyrhizobium japonicum interaction. Environ Exp Bot 78:76–83

    Article  CAS  Google Scholar 

  • Muñoz N, Rodríguez M, Robert G, Lascano R (2014a) Negative short-term salt effects on the soybean–Bradyrhizobium japonicum interaction and partial reversion by calcium addition. Funct Plant Biol 41(1):96–105

    Article  CAS  Google Scholar 

  • Muñoz N, Soria-Díaz ME, Manyani H, Sánchez-Matamoros RC, Serrano AG, Megías M, Lascano R (2014b) Structure and biological activities of lipochitooligosaccharide nodulation signals produced by Bradyrhizobium japonicum USDA 138 under saline and osmotic stress. Biol Fertil Soils 50(2):207–215

    Article  CAS  Google Scholar 

  • Muzlera Klappenbach A, Bustingorri C, Lavado RS (2015) Respuesta de la soja a elementos tóxicos (cloruros, arseniatos, fluoruros y vanadatos) presentes naturalmente en aguas y suelos. Agronomía & Ambiente 35(1):59–70

    Google Scholar 

  • Nosetto MD, Jobbágy EG, Tóth T, Jackson RB (2008) Regional patterns and controls of ecosystem salinization with grassland afforestation along a rainfall gradient. Glo Biogeochem Cycles 22. https://doi.org/10.1029/2007GB003000

  • Oertli J (1968) Extracellular salt accumulation a possible mechanism of salt injury in plants. Agrochimica 12(5):461

    Google Scholar 

  • Oi T, Taniguchi M, Miyake H (2012) Morphology and ultrastructure of the salt glands on the leaf surface of Rhodes grass (Chloris gayana Kunth). Int J Plant Sci 173(5):454–463

    Article  CAS  Google Scholar 

  • Ortega L, Fry SC, Taleisnik E (2006) Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone. J Exp Bot 57(14):3945–3952

    Article  CAS  Google Scholar 

  • Osmond CB, Björkman O, Anderson DJ (1980) Physiological processes in plant ecology. Toward a synthesis with Atriplex. Ecological studies, vol 36. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Park HJ, Kim W-Y, Yun D-J (2016) A new insight of salt stress signaling in plant. Mol Cells 39(6):447

    Article  CAS  Google Scholar 

  • Parker MB, Gascho G, Gaines T (1983) Chloride toxicity of soybeans grown on atlantic coast flatwoods soils. Agron J 75(3):439–443

    Article  CAS  Google Scholar 

  • Passioura JB (2006) The perils of pot experiments. Funct Plant Biol 33:1075–1079

    Article  Google Scholar 

  • Pensiero JF, Zabala JM (2017) Recursos fitogenéticos forrajeros nativos y naturalizados para los bajos submeridionales: prospección y priorización de especies para planes de introducción a cultivo. Revista FAVE—Ciencias Agrarias 16(1):67–98

    Article  Google Scholar 

  • Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50(10):1196–1212

    Article  CAS  Google Scholar 

  • Pittaro G, Cáceres L, Bruno C, Tomás A, Bustos D, Monteoliva M, Ortega L, Taleisnik E (2016) Salt tolerance variability among stress-selected Panicum coloratum cv Klein plants. Grass Forage Sci 71(4):683–698

    Article  CAS  Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev 19(4):429–453

    Article  Google Scholar 

  • Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R (2018) Improvement of salt tolerance using wild rice genes. Front Plant Sci 8:2269

    Article  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249

    Article  CAS  Google Scholar 

  • Rao PS, Vinutha KS, Kumar GSA, Chiranjeevi T, Uma A, Lal P, Prakasham RS, Singh HP, Rao RS, Chopra S, Jose S (2016) Sorghum: a multipurpose bioenergy crop. In: Ciampitti I, Prasad V (eds) Sorghum: state of the art and future perspectives. Agronomy Monographs, vol 58. American Society of Agronomy and Crop Science Society of America, Inc., Madison, pp 1–26

    Google Scholar 

  • Reginato M, Sosa L, Llanes A, Hampp E, Vettorazzi N, Reinoso H, Luna V (2014) Na2SO4 and NaCl determine different growth responses and ion accumulation in the halophytic legume Prosopis strombulifera. Plant Biol 16:97–106

    Article  CAS  Google Scholar 

  • Rhodes D, Felker P (1988) Mass screening of Prosopis (mesquite) seedlings for growth at seawater salinity concentrations. Forest Ecol Manage 24(3):169–176

    Article  Google Scholar 

  • Rick CM (1973) Potential genetic resources in tomato species: clues from observations in native habitats. In: Srb AM (ed) Genes, enzymes, and populations. Plenus Press, New York, London, pp 255–269

    Chapter  Google Scholar 

  • Ridley AM, Pannell DJ (2006) The role of plants and plant-based research and development in managing dryland salinity in Australia. Aust J Exp Agric 45(11):1341–1355

    Article  Google Scholar 

  • Robert G, Muñoz N, Melchiorre M, Sánchez F, Lascano R (2014) Expression of animal anti-apoptotic gene Ced-9 enhances tolerance during Glycine max L.-Bradyrhizobium japonicum interaction under saline stress but reduces nodule formation. PLoS ONE 9(7):e101747

    Google Scholar 

  • Robert G, Muñoz N, Alvarado-Affantranger X, Saavedra L, Davidenco V, Rodríguez-Kessler M, Estrada-Navarrete G, Sánchez F, Lascano R (2018) Phosphatidylinositol 3-kinase function at very early symbiont perception: a local nodulation control under stress conditions? J Exp Bot 69(8):2037–2048

    Article  CAS  Google Scholar 

  • Rodríguez AA, Córdoba AR, Ortega L, Taleisnik E (2004) Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity. J Exp Bot 55(401):1383–1390

    Article  CAS  Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60(15):4249–4262

    Article  CAS  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotec 26:115–124

    Article  CAS  Google Scholar 

  • Ruiz M, Olivieri G, Vita Serman F (2011) Effects of saline stress in two cultivars of Olea europea L: ‘Arbequina’ and ‘Barnea’. Acta Hortic 924:117–124

    Article  CAS  Google Scholar 

  • Ruiz M, Taleisnik E (2013) Field hydroponics assessment of salt tolerance in Cenchrus ciliaris (L.): growth, yield, and maternal effect. Crop Pasture Sci 64(6):631–639

    Google Scholar 

  • Ruolo MS (2010) Morfogénesis, estructura, producción y calidad de Chloris gayana Kunth bajo distintos regímenes de defoliación. Doctoral dissertation, Universidad de Buenos Aires, p 67

    Google Scholar 

  • Schmidt R, Kunkowska AB, Schippers JH (2016) Role of reactive oxygen species during cell expansion in leaves. Plant Physiol 172(4):2098–2106

    Article  CAS  Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Introduction to soil salinity, sodicity and diagnostics techniques. In: Zaman M, Shahid S, Heng L (eds) Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer International Publishing, pp 1–42

    Google Scholar 

  • Shomer-Ilan ASYB, Kipnis T, Elmer D, Waisel Y (1979) Effects of salinity, N-nutrition and humidity on photosynthesis and protein metabolism of Chloris gayana Kunth. Plant Soil 53:477–486

    Article  CAS  Google Scholar 

  • Sunkar R, Bartels D, Kirch HH (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35(4):452–464

    Article  CAS  Google Scholar 

  • Taleisnik E, Grunberg K (1994) Ion balance in tomato cultivars differing in salt tolerance. I. Sodium and potassium accumulation and fluxes under moderate salinity. Physiol Plant 92(3):528–534

    Google Scholar 

  • Taleisnik E, López Launestein D (2011) Leñosas perennes para ambientes afectados por salinidad: Una sinopsis de la contribución argentina a este tema. Ecol Austral 21(1):3–14

    Google Scholar 

  • Taleisnik E, Lavado RS (eds) (2017) Ambientes salinos y alcalinos en la Argentina. Recursos y aprovechamiento productivo. Orientación Gráfica Editora, Universidad Católica de Córdoba, Buenos Aires

    Google Scholar 

  • Taleisnik E, Rodríguez AA, Bustos D, Erdei L, Ortega L, Senn ME (2009) Leaf expansion in grasses under salt stress. J Plant Physiol 166(11):1123–1140

    Article  CAS  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) The response of barley to salinity stress differs between hydroponic and soil systems. Funct Plant Biol 37(7):621–633

    Article  Google Scholar 

  • Taylor R, Young E Jr, Rivera R (1975) Salt tolerance in cultivars of grain sorghum. Crop Sci 15(5):734–735

    Article  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    Article  CAS  Google Scholar 

  • Toll Vera JR (ed) (2016) Grama Rhodes: centenario de su liberación en Argentina. Publicación conmemorativa. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia, San Miguel de Tucumán

    Google Scholar 

  • Velagaleti R, Schweitzer SM (1993) General effects of salt stress on growth and symbiotic nitrogen fixation in soybean. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 461–471

    Google Scholar 

  • Venier M, Bermejillo A, Filippini MF, Fernández Alonso S, Agüero CB, Blumwald E, Dandekar A (2014) Phenotypic evaluation of ‘Thompson Seedless’ grapes transformed with AtNHX1 growing in hydroponics and potted soils. Acta Hortic 1046:423–430

    Article  Google Scholar 

  • Vila HF, Di Filippo ML, Venier M, Filippini MF (2016) How rootstocks influence salt tolerance in grapevine? The roles of conferred vigor and ionic exclusion. Acta Hortic 1136:145–154

    Article  Google Scholar 

  • Villagra P, Passera C, Greco S, Sartor C, Naranibar J, Meglioli P, Alvarez J, Allegretti L, Fernández N, Cony M, Kozub P, Vega Riveros C (2017) Uso de plantas nativas en la restauración y recuperación productiva de ambientes salinos de las zonas áridas de la región del Monte, Argentina. In: Taleisnik E, Lavado RS (eds) Ambientes salinos y alcalinos de la Argentina. Recursos y aprovechamiento productivo. Orientación Gráfica Editora y Universidad Católica de Córdoba, Buenos Aires, pp 419–444

    Google Scholar 

  • Waltz E (2015) First stress-tolerant soybean gets go-ahead in Argentina. Nat Biotechnol 33(7):682

    Article  CAS  Google Scholar 

  • Wang D, Shannon M (1999) Emergence and seedling growth of soybean cultivars and maturity groups under salinity. Plant Soil 214(1–2):117–124

    Article  CAS  Google Scholar 

  • Weimberg R, Lerner H, Poljakoff-Mayber A (1982) A relationship between potassium and proline accumulation in salt-stressed Sorghum bicolor. Physiol Plant 55(1):5–10

    Article  CAS  Google Scholar 

  • World Bank (2018) https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?end=2018&locations=AR&start=2003

  • Wu H, Zhu M, Shabala L, Zhou M, Shabala S (2015) K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. J Integr Plant Biol 57(2):171–185

    Article  CAS  Google Scholar 

  • Xu D, Gai J (2003) Genetic diversity of wild and cultivated soybeans growing in China revealed by RAPD analysis. Plant Breed 122(6):503–506

    Article  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217(2):523–539

    Article  CAS  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50(332):291–302

    Article  CAS  Google Scholar 

  • Zhang X, Zhou Q, Cao J, Yu B (2011) Differential Cl/salt tolerance and NaCl-induced alternations of tissue and cellular ion fluxes in Glycine max, Glycine soja and their hybrid seedlings. J Agron Crop Sci 197(5):329–339

    Article  CAS  Google Scholar 

  • Zilli CG, Balestrasse KB, Yannarelli GG, Polizio AH, Santa-Cruz DM, Tomaro ML (2008) Heme oxygenase up-regulation under salt stress protects nitrogen metabolism in nodules of soybean plants. Environ Exp Bot 64(1):83–89

    Article  CAS  Google Scholar 

  • Zilli CG, Santa-Cruz DM, Balestrasse KB (2014) Heme oxygenase-independent endogenous production of carbon monoxide by soybean plants subjected to salt stress. Environ Exp Bot 102:11–16

    Article  CAS  Google Scholar 

  • Zilli CG, Santa-Cruz DM, Yannarelli GG, Noriega GO, Tomaro ML, Balestrasse KB (2009) Heme oxygenase contributes to alleviate salinity damage in Glycine max L. leaves. Int J Cell Biol. https://doi.org/10.1155/2009/848516

  • Zorin M, Loch DS (2007) Development of new Chloris gayana cultivars with improved salt tolerance from ‘Finecut’ and ‘Topcut.’ Proceedings sixth international Herbage seed conference. Gjennestad, Norway, pp 92–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Taleisnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taleisnik, E., Rodríguez, A.A., Bustos, D.A., Luna, D.F. (2021). Plant Tolerance Mechanisms to Soil Salinity Contribute to the Expansion of Agriculture and Livestock Production in Argentina. In: Taleisnik, E., Lavado, R.S. (eds) Saline and Alkaline Soils in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-52592-7_19

Download citation

Publish with us

Policies and ethics