Skip to main content

Abstract

As mortality improves in the pediatric intensive care unit (PICU), patients are surviving with significant functional deficits. Outcomes literature, mostly focused in the adult population, supports early mobility as an approach to mitigate the physical deficits incurred by ICU patients. Research has illustrated numerous benefits of early mobility, including increased muscle fiber cross-sectional area, earlier achievement of activities of daily living, fewer ventilator days, decreased ICU length of stay, decreased hospital length of stay, and less delirium. Despite these findings, there is a limited pediatric outcome evidence and well-documented barriers to instituting mobility protocols in the PICU. However, numerous pediatric feasibility studies have supported the attainability and safety of early mobility in the pediatric population. More robust research on the effects of early mobility in children is needed, as is support for resources, as pediatric programs work toward instituting their own programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Namachivayam P, Shann F, Shekerdemian L, Taylor A, Van Sloten I, Delzoppo C, et al. Three decades of pediatric intensive care: who was admitted, what happened in intensive care, and what happened afterward. Pediatr Crit Care Med. 2010;11(5):549–55.

    Article  Google Scholar 

  2. Burns JP, Sellers DE, Meyer EC, Lewis-Newby M, Truog RD. Epidemiology of death in the PICU at Five U.S. teaching hospitals. Crit Care Med. 2014;42(9):2101–8.

    Article  Google Scholar 

  3. Brummel N, Sidiqi S, Pandharipande P, Thompson J, Vasilevskis E, Girard T, et al. Overlap of cognitive, physical and mental health impairments in the post-intensive care syndrome. Crit Care Med. 2014;42(12):A358.

    Google Scholar 

  4. Marra A, Pandharipande PP, Girard TD, Patel MB, Hughes CG, Jackson JC, et al. Co-occurrence of post-intensive care syndrome problems among 406 survivors of critical illness. Crit Care Med. 2018;46(9):1393–401.

    Article  Google Scholar 

  5. Elliott D, Davidson JE, Harvey MA, Bemis-Dougherty A, Hopkins RO, Iwashyna TJ, et al. Exploring the scope of post–intensive care syndrome therapy and care. Crit Care Med. 2014;42(12):2518–26.

    Article  Google Scholar 

  6. Rawal G, Yadav S, Kumar R. Post-intensive care syndrome: an overview. J Transl Intern Med. 2017;5(2):90–2.

    Article  Google Scholar 

  7. Herrup EA, Wieczorek B, Kudchadkar SR. Characteristics of postintensive care syndrome in survivors of pediatric critical illness: a systematic review. World J Crit Care Med. 2017;6(2):124–34.

    Article  Google Scholar 

  8. Hopkins R, Choong K, Zebuhr C, Kudchadkar S. Transforming PICU culture to facilitate early rehabilitation. J Pediatr Intensive Care. 2015;4(4):204–11.

    Article  Google Scholar 

  9. Bone MF, Feinglass JM, Goodman DM. Risk factors for acquiring functional and cognitive disabilities during admission to a PICU. Pediatr Crit Care Med. 2014;15(7):640–8.

    Article  Google Scholar 

  10. Pinto NP, Rhinesmith EW, Kim TY, Ladner PH, Pollack MM. Long-term function after pediatric critical illness: results from the survivor outcomes study. Pediatr Crit Care Med. 2017;18(3):e122–30.

    Article  Google Scholar 

  11. Jones S, Rantell K, Stevens K, Colwell B, Ratcliffe JR, Holland P, et al. Outcome at 6 months after admission for pediatric intensive care: a report of a National Study of Pediatric Intensive Care Units in the United Kingdom. Pediatrics. 2006;18(3):e122–30.

    Google Scholar 

  12. Fiser DH, Tilford JM, Roberson PK. Relationship of illness severity and length of stay to functional outcomes in the pediatric intensive care unit: a multi-institutional study. Crit Care Med. 2000;28(4):1173–9.

    Article  CAS  Google Scholar 

  13. Pollack MM, Holubkov R, Funai T, Clark A, Berger JT, Meert K, et al. Pediatric intensive care outcomes: development of new morbidities during pediatric critical care. Pediatr Crit Care Med. 2014;15(9):821–7.

    Article  Google Scholar 

  14. Alievi PT, Carvalho PRA, Trotta EA, Filho RM. The impact of admission to a pediatric intensive care unit assessed by means of global and cognitive performance scales. Jornal de Pediatria. 2007;83(6):505–11.

    Article  Google Scholar 

  15. Ong C, Lee JH, Leow MKS, Puthucheary ZA. Functional outcomes and physical impairments in pediatric critical care survivors: a scoping review. Pediatr Crit Care Med. 2016;17(5):e247–59.

    Article  Google Scholar 

  16. Choong K, Fraser D, Al-Harbi S, Borham A, Cameron J, Cameron S, et al. Functional recovery in critically ill children, the “WeeCover” multicenter study. Pediatr Crit Care Med. 2018;19(2):145–54.

    Article  Google Scholar 

  17. Nelson LP, Lachman SE, Li SW, Gold JI. The effects of family functioning on the development of posttraumatic stress in children and their parents following admission to the PICU*. Pediatr Crit Care Med. 2019;20(4):e208–15.

    Article  Google Scholar 

  18. Kramer CL. Intensive care unit–acquired weakness. Neurol Clin. 2017;35(4):723–36.

    Article  Google Scholar 

  19. Jolley SE, Bunnell AE, Hough CL. ICU-acquired weakness. Chest [Internet]. 2016;150(5):1129–40. Available from: https://doi.org/10.1016/j.chest.2016.03.045

  20. Kress JP, Hall JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med [Internet]. 2014;370(17):1626–35. Available from: http://www.nejm.org/doi/10.1056/NEJMra1209390

  21. Banwell BL, Mildner RJ, Hassall AC, Becker LE, Vajsar J, Shemie SD. Muscle weakness in critically ill children. Neurology. 2003;61(12):1779–82.

    Article  CAS  Google Scholar 

  22. Kukreti V, Shamim M, Khilnani P. Intensive care unit acquired weakness in children: critical illness polyneuropathy and myopathy. Indian J Crit Care Med. 2014;18(2):95–101.

    Article  Google Scholar 

  23. Johnson RW, Ng KWP, Dietz AR, Hartman ME, Baty JD, Hasan N, et al. Muscle atrophy in mechanically-ventilated critically ill children. PLoS One. 2018;13(12):e0207720.

    Article  Google Scholar 

  24. Valla FV, Young DK, Rabilloud M, Periasami U, John M, Baudin F, et al. Thigh ultrasound monitoring identifies decreases in quadriceps femoris thickness as a frequent observation in critically ill children. Pediatr Crit Care Med. 2017;18(8):e339–47.

    Article  Google Scholar 

  25. Glau CL, Conlon TW, Himebauch AS, Yehya N, Weiss SL, Berg RA, et al. Progressive diaphragm atrophy in pediatric acute respiratory failure. Pediatr Crit Care Med. 2018;19(5):406–11.

    Article  Google Scholar 

  26. Colleti J, De Carvalho WB. PICU-acquired weakness: underestimated and underreported. Pediatr Crit Care Med. 2016;17(4):381.

    Article  Google Scholar 

  27. Field-Ridley A, Dharmar M, Steinhorn D, McDonald C, Marcin JP. ICU-acquired weakness is associated with differences in clinical outcomes in critically ill children. Pediatr Crit Care Med. 2016;17(1):53–7.

    Article  Google Scholar 

  28. Society of Critical Care Medicine. ICU Liberation [Internet]. Available from: https://www.sccm.org/ICULiberation/Home

  29. Ely EW. The ABCDEF bundle: science and philosophy of how ICU liberation serves patients and families. Crit Care Med. 2017;45(2):321–30.

    Article  Google Scholar 

  30. Marra A, Ely EW, Pandharipande PP, Patel MB. The ABCDEF bundle in critical care. Crit Care Clin. 2017;33:225–43.

    Article  Google Scholar 

  31. Pun BT, Balas MC, Barnes-Daly MA, Thompson JL, Aldrich JM, Barr J, et al. Caring for critically ill patients with the ABCDEF bundle. Crit Care Med. 2019;47(1):3–14.

    Article  Google Scholar 

  32. Hickmann CE, Castanares-Zapatero D, Deldicque L, Van den Bergh P, Caty G, Robert A, et al. Impact of very early physical therapy during septic shock on skeletal muscle. Crit Care Med [Internet]. 2018;46(9):1. Available from: http://insights.ovid.com/crossref?an=00003246-900000000-96229

  33. Thabet Mahmoud A, Tawfik MAM, Abd El Naby SA, Abo El Fotoh WMM, Saleh NY, Abd El Hady NMS. Neurophysiological study of critical illness polyneuropathy and myopathy in mechanically ventilated children; additional aspects in paediatric critical illness comorbidities. Eur J Neurol. 2018;25(7):991–8.

    Article  CAS  Google Scholar 

  34. Finn PJ, Plank LD, Clark MA, Connolly AB, Hill GL. Progressive cellular dehydration and proteolysis in critically ill patients. Lancet. 1996;347(9002):654–6.

    Article  CAS  Google Scholar 

  35. Ferrando AA, Lane HW, Stuart CA, Davis-Street J, Wolfe RR. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol Endocrinol Metab. 1996;270(4 Pt 1):E627–33.

    Article  CAS  Google Scholar 

  36. Truong AD, Fan E, Brower RG, Needham DM. Bench-to-bedside review: mobilizing patients in the intensive care unit – from pathophysiology to clinical trials. Crit Care. 2009;13(4):216.

    Article  Google Scholar 

  37. Brower RG. Consequences of bed rest. Critical Care Medicine. 2009;37(10 Suppl):S422–8.

    Article  Google Scholar 

  38. Patel BK, Pohlman AS, Hall JB, Kress JP. Impact of early mobilization on glycemic control and ICU-acquired weakness in critically ill patients who are mechanically ventilated. Chest. 2014;146(3):583–9.

    Article  CAS  Google Scholar 

  39. Hamburg NM, McMackin CJ, Huang AL, Shenouda SM, Widlansky ME, Schulz E, et al. Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol. 2007;146(3):583–9.

    Google Scholar 

  40. Clavet H, Hébert PC, Fergusson D, Doucette S, Trudel G. Joint contracture following prolonged stay in the intensive care unit. CMAJ. 2008;178(6):691–7.

    Article  Google Scholar 

  41. G J, M K, G R, H R, K K, E P, et al. Pediatric contractures in burn injury: a burn model system national database study. J Burn Care Res. 2017;38(1):e192–9.

    Article  Google Scholar 

  42. Dittmer DK, Teasell R. Complications of immobilization and bed rest. Part 1: musculoskeletal and cardiovascular complications. Can Fam Physician. 1993;39:1428–32.

    CAS  Google Scholar 

  43. Teasell R, Dittmer DK. Complications of immobilization and bed rest. Part 2: other complications. Can Fam Physician. 1993;39:1440–2.

    CAS  Google Scholar 

  44. NICE Guidelines. Delirium: pre prevention, diagnosis and management. Natl Collaborating Cent Acute Chronic Cond. 2010. https://www.nice.org.uk/guidance/cg103, Published date: 28 July 2010 Last updated: 14 March 2019, page 13/21 of guideline.

  45. Lipnicki DM, Gunga HC. Physical inactivity and cognitive functioning: results from bed rest studies. Eur J Appl Physiol. 2009;105(1):27–35.

    Article  Google Scholar 

  46. Ries E. Some radical changes in the after-treatment of celiotomy cases. J Am Med Assoc. 1899;XXXIII(8):454–6.

    Article  Google Scholar 

  47. Ghormley RK. The abuse of rest in bed in orthopedic surgery. J Am Med Assoc. 1944;54:330–3.

    Google Scholar 

  48. Dock W. The evil sequelae of complete bed rest. J Am Med Assoc. 1944;125(16):1083–5.

    Article  Google Scholar 

  49. Powers JH. The abuse of rest as a therapeutic measure in surgery: early postoperative activity and rehabilitation. J Am Med Assoc. 1945;6:544–6.

    Google Scholar 

  50. Ashkins J. Early rising after surgical operations. N Engl J Med. 1945;233:33–7.

    Article  Google Scholar 

  51. Hashem MD, Nelliot A, Needham DM. Early mobilization and rehabilitation in the ICU: moving back to the future. Respir Care. 2016;61(7):971–9.

    Article  Google Scholar 

  52. Cameron S, Ball I, Cepinskas G, Choong K, Doherty TJ, Ellis CG, et al. Early mobilization in the critical care unit: a review of adult and pediatric literature. J Crit Care. 2015;30(4):664–72.

    Article  Google Scholar 

  53. Hodgson CL, Berney S, Harrold M, Saxena M, Bellomo R. Clinical review: early patient mobilization in the ICU. Crit Care. 2012;17(1):207.

    Article  Google Scholar 

  54. Johnson AM, Henning AN, Morris PE, Tezanos AGV, Dupont-Versteegden EE. Timing and amount of physical therapy treatment are associated with length of stay in the cardiothoracic icu. Sci Rep. 2017;7(1):17591.

    Article  CAS  Google Scholar 

  55. Bakhru RN, Wiebe DJ, McWilliams DJ, Spuhler VJ, Schweickert WD. An environmental scan for early mobilization practices in U.S. ICUs. Crit Care Med. 2015;43(11):2360–9.

    Article  Google Scholar 

  56. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388(10052):1377–88.

    Google Scholar 

  57. Wieczorek B, Ascenzi J, Kim Y, Lenker H, Potter C, Shata NJ, et al. PICU Up! Pediatr Crit Care Med [Internet]. 2016;17(12):e559–66. Available from: http://insights.ovid.com/crossref?an=00130478-201612000-00021

  58. Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36(8):2238–43.

    Article  Google Scholar 

  59. Betters KA, Hebbar KB, Farthing D, Griego B, Easley T, Turman H, et al. Development and implementation of an early mobility program for mechanically ventilated pediatric patients. J Crit Care. 2017;41

    Google Scholar 

  60. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet [Internet]. 2009;373(9678):1874–82. Available from: https://doi.org/10.1016/S0140-6736(09)60658-9

  61. Needham DM, Korupolu R, Zanni JM, Pradhan P, Colantuoni E, Palmer JB, et al. Early physical medicine and rehabilitation for patients with acute respiratory failure: a quality improvement project. Arch Phys Med Rehabil. 2010;91(4):536–42.

    Article  Google Scholar 

  62. Tsuboi N, Hiratsuka M, Kaneko S, Nishimura N, Nakagawa S, Kasahara M, et al. Benefits of early mobilization after pediatric liver transplantation. Pediatr Crit Care Med. 2019;20(2):e91–7.

    Article  Google Scholar 

  63. Simone S, Edwards S, Lardieri A, Walker LK, Graciano AL, Kishk OA, et al. Implementation of an ICU bundle: an Interprofessional quality improvement project to enhance delirium management and monitor delirium prevalence in a single PICU. Pediatr Crit Care Med. 2017;18(6):531–40.

    Article  Google Scholar 

  64. Choong K, Koo KKY, Clark H, Chu R, Thabane L, Burns KEA, et al. Early mobilization in critically ill children: a survey of Canadian practice. Crit Care Med. 2013;41(7):1745–53.

    Article  Google Scholar 

  65. Joyce CL, Taipe C, Sobin B, Spadaro M, Gutwirth B, Elgin L, et al. Provider beliefs regarding early mobilization in the pediatric intensive care unit. J Pediatr Nurs [Internet]. 2018;38:15–9. Available from: https://doi.org/10.1016/j.pedn.2017.10.003

  66. Colwell BRL, Williams CN, Kelly SP, Ibsen LM. Mobilization therapy in the pediatric intensive care unit: a multidisciplinary quality improvement initiative. Am J Crit Care. 2018;27(3):194–203.

    Article  Google Scholar 

  67. Dubb R, Nydahl P, Hermes C, Schwabbauer N, Toonstra A, Parker AM, et al. Barriers and strategies for early mobilization of patients in intensive care units. Ann Am Thorac Soc. 2016;13(5):724–30.

    Article  Google Scholar 

  68. Razavi SS, Nejad RA, Mohajerani SA, Talebian M. Risk factors of unplanned extubation in pediatric intensive care unit. Tanaffos. 2013;12(3):11–6.

    Google Scholar 

  69. Vats A, Hopkins C, Hatfield KM, Yan J, Palmer R, Keskinocak P. An airway risk assessment score for unplanned extubation in intensive care pediatric patients. Pediatr Crit Care Med. 2017;18(7):661–6.

    Article  Google Scholar 

  70. Ullman AJ, Marsh N, Mihala G, Rickard CM, Cooke M. Complications of central venous access devices: a systematic review. Pediatrics. 2015;136(5):e1331–44.

    Article  Google Scholar 

  71. Kudchadkar SR, Nelliot A, Awojoodu R, Vaidya D, Traube C, Walker T, et al. Physical Rehabilitation in Critically Ill Children: A Multicenter Point Prevalence Study in the United States. Crit Care Med. 2020;48(5):634–44.

    Google Scholar 

  72. Fink EL, Beers SR, Houtrow AJ, Richichi R, Burns C, Doughty L, et al. Early protocolized versus usual care rehabilitation for pediatric neurocritical care patients: a randomized controlled trial. Pediatr Crit Care Med. 2019;20(6):540–50.

    Article  Google Scholar 

  73. Choong K, Awladthani S, Khawaji A, Clark H, Borhan A, Cheng J, et al. Early exercise in critically ill youth and children, a preliminary evaluation: the wEECYCLE pilot trial. Pediatr Crit Care Med. 2017;18(11):e546–54.

    Article  Google Scholar 

  74. Abdulsatar F, Walker RG, Timmons BW, Choong K. “Wii-Hab” in critically ill children: a pilot trial. J Pediatr Rehabil Med. 2013;6(4):193–204.

    Article  Google Scholar 

  75. Cuello-Garcia CA, Mai SHC, Simpson R, Al-Harbi S, Choong K. Early mobilization in critically ill children: a systematic review. J Pediatr [Internet]. 2018.; Available from: https://doi.org/10.1016/j.jpeds.2018.07.037

  76. Walker T, Kudchadkar SR. Early mobility in the pediatric intensive care unit: can we move on? J Pediatr. 2018;203:10–2.

    Article  Google Scholar 

  77. Walker TC, Kudchadkar SR. Early mobilization in the pediatric intensive care unit. Transl Pediatr. 2018;7(4):308–13.

    Article  Google Scholar 

  78. Saliski M, Kudchadkar S. Optimizing sedation management to promote early mobilization for critically ill children. J Pediatr Intensive Care. 2015;4(4):188–93.

    Article  Google Scholar 

  79. Lord RK, Mayhew CR, Korupolu R, Mantheiy EC, Friedman MA, Palmer JB, et al. ICU early physical rehabilitation programs: financial modeling of cost savings. Crit Care Med. 2013;41(3):717–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapna R. Kudchadkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Betters, K.A., Kudchadkar, S.R. (2021). Mobility in the PICU. In: Kamat, P.P., Berkenbosch, J.W. (eds) Sedation and Analgesia for the Pediatric Intensivist. Springer, Cham. https://doi.org/10.1007/978-3-030-52555-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52555-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52554-5

  • Online ISBN: 978-3-030-52555-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics