Skip to main content

Manipulation of Leading-Edge Vortex Flow

  • Chapter
  • First Online:
  • 1130 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 145))

Abstract

At very high angles of attack, the leading-edge vortex of a semi-slender delta wing becomes unsteady and collapses, endangering the flight stability. Active flow control by pulsed blowing stabilizes the vortex system, enlarging the flight envelope for such wing configurations. The reattachment of the separated shear layer during post-stall causes a lift increase of more than 50% and offers a great perspective for active flow control in aeronautical applications. However, the interactions of shear layer vortices with the jet-induced vortices are complex. This paper attempts to shed a light on the flow field response to pulsed blowing at the leading edge of a generic half delta wing model with a \(65^\circ \) sweep angle based on detached eddy simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gursul, I., Wang, Z., Vardaki, E.: Review of flow control mechanisms of leading-edge vortices. Prog. Aerosp. Sci. 43, 246–270 (2007). https://doi.org/10.1016/j.paerosci.2007.08.001

    Article  Google Scholar 

  2. Hall, M.G.: Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195–218 (1972). https://doi.org/10.1146/annurev.fl.04.010172.001211

    Article  MATH  Google Scholar 

  3. Schmücker, A., Gersten, K.: Vortex breakdown and its control on delta wings. Fluid Dyn. Res. 3(1–4), 268–272 (1988). https://doi.org/10.1016/0169-5983(88)90077-9

    Article  Google Scholar 

  4. Mitchell, A.M., Morton, S.A., Molton, P., Guy, Y.: Flow control of vortical structures and vortex breakdown over slender wings. In: RTO Applied Vehicle Technology Panel (AVT) Symposium, Leon, Norway (2001)

    Google Scholar 

  5. Greenblatt, D., Wygnanski, I.: The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36(7), 487–545 (2000). https://doi.org/10.1016/S0376-0421(00)00008-7

    Article  Google Scholar 

  6. Guy, Y., Morrow, J.A., McLaughlin, T.E.: Control of vortex breakdown on a delta wing by periodic blowing and suction. In: 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 99-0132, Reno NV (1999). https://doi.org/10.2514/6.1999-132

  7. Margalit, S., Greenblatt, D., Seifert, A., Wygnanski, I.: Delta wing stall and roll control using segmented piezoelectric fluidic actuators. J. Aircraft 42(3), 678–709 (2005). https://doi.org/10.2514/1.6904

    Article  Google Scholar 

  8. Gu, W., Robinson, O., Rockwell, D.: Control of vortices on a delta wing by leading-edge injection. AIAA J. 31(7), 1177–1186 (1993). https://doi.org/10.2514/3.11749

    Article  Google Scholar 

  9. Gad-El-Hak, M., Blackwelder, R.F.: Control of the discrete vortices from a delta wing. AIAA J. 25(8), 1042–1049 (1987). https://doi.org/10.2514/3.9740

    Article  Google Scholar 

  10. Kölzsch, A., Breitsamter, C.: Vortex flow manipulation on a generic delta-wing configuration. J. Aircraft 51(5), 1380–1390 (2014). https://doi.org/10.2514/1.C032231

    Article  Google Scholar 

  11. Buzica, A., Bartasevicius, J., Breitsamter, C.: Experimental investigation of high-incidence delta-wing flow control. Exp. Fluids 58, 131 (2017). https://doi.org/10.1007/s00348-017-2408-9

  12. Bartasevicius, J., Buzica, A., Breitsamter, C.: Discrete vortices on delta wings with unsteady leading-edge blowing. In: 8th AIAA Flow Control Conference, AIAA 2016-3170, Washington DC (2016). https://doi.org/10.2514/6.2016-3170

  13. Buzica, A., Biswanger, M., Breitsamter, C.: Detached eddy-simulation of delta-wing post-stall flow control. Transp. Res. Proc. 29, 46–57 (2018). https://doi.org/10.1016/j.trpro.2018.02.005

    Article  Google Scholar 

  14. Breitsamter, C.: Unsteady flow phenomena associated with leading-edge vortices. Prog. Aerosp. Sci. 44, 48–56 (2008). https://doi.org/10.1016/j.paerosci.2007.10.002

    Article  Google Scholar 

  15. Hummel, D.J.: The international vortex flow experiment 2 (VFE-2): background, objectives and organization. Aerosp. Sci. Technol. 24(1), 1–9 (2013). https://doi.org/10.1016/j.ast.2012.08.008

  16. Strelets, M.: Detached eddy simulation of massively separated flows. In: 39th Aerospace Sciences Meeting and Exhibit, AIAA 2001-0879, Reno NV (2001). https://doi.org/10.2514/6.2001-879

  17. Menter, F.R., Kunz, M.: Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: McCallen R., Browand F., Ross J. (eds.), The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains. Lecture Notes in Applied and Computational Mechanics, vol. 19, pp. 339–352. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-44419-0_30

  18. Spalart, P.R., Street, C.: Young-person’s guide to detached-eddy simulation grids. Boeing Commercial Airplanes, NASA/CR-2001-211032, Washington, Seattle (2001)

    Google Scholar 

  19. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010). https://doi.org/10.1017/S0022112010001217

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the project funding by the “Deutsche Forschungsgemeinschaft” (DFG, German Research Association), Grant Number BR-1511/6-2. In addition, the authors thank ANSYS Germany and the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing licences and computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Center (www.lrz.de), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Buzica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buzica, A., Breitsamter, C. (2021). Manipulation of Leading-Edge Vortex Flow. In: Radespiel, R., Semaan, R. (eds) Fundamentals of High Lift for Future Civil Aircraft. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-030-52429-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52429-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52428-9

  • Online ISBN: 978-3-030-52429-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics