Skip to main content

Nanomaterials in Prosthetic Rehabilitation of Maxillofacial Defects

  • Chapter
  • First Online:
  • 515 Accesses

Abstract

Maxillofacial reconstruction is complicated due to the etiology and nature of the tissue injury. The complexity of the facial structures adds to the difficulty of rehabilitation both functionally and esthetically. Skeletal reconstruction is by far the easiest part of the rehabilitation. Restoration of soft tissues like skin, cartilage, and mucosa without the support of the underlying bony architecture is possible with prosthesis. Silicone is the most commonly used prosthetic material for maxillofacial rehabilitation. Nanomaterials play an important role in bestowing color compatibility and interface stability in the prosthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sybil D. Anatomic challenges in surgical reconstruction and functional rehabilitation of maxillofacial skeleton. Int J Recent Sci Res. 2018;9(2):23899–903.

    Google Scholar 

  2. Booth PW, Schendel SA, Hausamen JE. Maxillofacial surgery, vol. 2. 2nd ed. Philadelphia, PA: Elsevier; 2007. p. 83–92.

    Google Scholar 

  3. Guerrero-Santos J, Altamirano JT. The use of lingual flaps in repair of fistulas of the hard palate. Plast Reconstr Surg. 1996;38:123–8.

    Article  Google Scholar 

  4. Tiwari R. Masseter muscle crossover flap in primary closure of oral-pharyngeal defects. J Laryngol Otol. 1987;101:172–8.

    Article  CAS  Google Scholar 

  5. Egyedi P. Utilization of the buccal fat pad for the closure of oro-antral and oro-nasal communications. J Maxillofac Surg. 1977;5:241–4.

    Article  CAS  Google Scholar 

  6. Cohen IK, Edgerton MT. Transbuccal flaps for the reconstruction of the floor of mouth. Plast Reconstr Surg. 1971;48:8–10.

    Article  CAS  Google Scholar 

  7. Lentz J. Ankylose osseuse de la mâchoire inférieure, résection du col condyle avec interposition du muscle temporal entre les surfaces de résection. Congrés Franc de Chir 1895;113.

    Google Scholar 

  8. McGregor IA. The temporal flap in intra-oral cancer. Br J Plast Surg. 1963;16:318–23.

    Article  CAS  Google Scholar 

  9. McGregor IA, Jackson IT. The extended role of the deltopectoral flap. Br J Plast Surg. 1970;23:173–9.

    Article  CAS  Google Scholar 

  10. Jiano J. Paralizie faciale dupa extriparea unei tumori a parotidee trata prin operatia dlui gomoue. Bull Mem Soc Clin Bucharest 1908:22.

    Google Scholar 

  11. Conley J. Use of composite flaps containing bone for major repairs in the head and neck. Plast Reconstr Surg. 1972;49:522–6.

    Article  CAS  Google Scholar 

  12. Ariyan S. The pectoralis major myocutaneous flap: a versatile flap for reconstruction in the head and neck. Plast Reconstr Surg. 1979;63:73–81.

    Article  CAS  Google Scholar 

  13. Futrell JW, Johns ME, Edgerton MT, et al. Platysma myocutaneous flap for intraoral reconstruction. Am J Surg. 1978;136:504–7.

    Article  CAS  Google Scholar 

  14. Quillen CG, Shearing JG, Georgade NG. Use of Latissmusdorsimyocutanoeus island flap for reconstruction in the head and neck area: case report. Plast Reconstr Surg. 1978;62:113–7.

    Article  CAS  Google Scholar 

  15. Martin D, Pascal JF, Baudet J, Mondie JM, Farhat JB, Athoum A, et al. The submental island flap: a new donor site: anatomy and clinical applications as a free or pedicled flap. Plast Reconstr Surg. 1993;92:867–73.

    Article  CAS  Google Scholar 

  16. Wang HS, Shen JW, Ma D, Wang JD, Tian AL. The infrahyoidmyocutaneous flap for reconstruction after resection of head and neck cancer. Cancer. 1986;57:663–8.

    Article  CAS  Google Scholar 

  17. Taylor GI. Reconstruction of mandible with free composite iliac bone grafts. Ann Plast Surg. 1982;9:361–8.

    Article  CAS  Google Scholar 

  18. Ueba Y, Fujikawa S. Nine years follow up of a free vascularized fibular graft in neuro fibromatosis: a case report and literature review. Int J Orthop Trauma Surg. 1983;26:595–600.

    Google Scholar 

  19. O’Brien BM, Morrison WA. Reconstructive microsurgery, vol. 76. Edinburgh: Churchill Livingstone; 1987. p. 97–101.

    Google Scholar 

  20. Soutar DS, Scheker LR, Tanner NSB, McGregor IA. The radial forearm flap: a versatile method for intraoral reconstruction. Br J Plast Surg. 1983;36:1–8.

    Article  CAS  Google Scholar 

  21. dos Santos LF. The vascular anatomy and dissection of the free scapular flap. Plast Reconstr Surg. 1984;73:599–605.

    Article  Google Scholar 

  22. McCraw JB, Furlow LT. The dorsalis pedis arterialized flap. Plast Reconstr Surg. 1975;55:177–85.

    Article  CAS  Google Scholar 

  23. Forrest C, Boyd JB, Manktelow RT, Zuker R, Bowen V. The free vascularized iliac crest tissue transfer: donor site complications associated with 82 cases. Br J Plast Surg. 1992;45:89–93.

    Article  CAS  Google Scholar 

  24. Han Y, Kiat-amnuay S, Powers JM, Zhao Y. Effect of Nano-oxide concentration on the mechanical properties of a maxillofacial silicone elastomer. J Prosthet Dent. 2008;100:465–73.

    Article  CAS  Google Scholar 

  25. Guttal SS, Patil NP, Nadiger RK, Hasti A. Nasal prosthesis for a patient with mammalian bite injury. Case report. J Indian Prosthodont Soc. 2007;7:43–5.

    Article  Google Scholar 

  26. Guttal SS, Patil NP, Shetye AD. Case report: Prosthetic rehabilitation of a midfacial defect resulting from lethal midline granuloma—a clinical report. J Oral Rehabil. 2006;33:863–7.

    Article  CAS  Google Scholar 

  27. Guttal SS, Patil NP, Nadiger RK, Rachana KB, Dharnendra, Basutkar N. Use of acrylic resin base as an aid in retaining silicone orbital prosthesis. J Indian Prosthodont Soc. 2008;8:112–5.

    Article  Google Scholar 

  28. Avinash CKA, Nadiger R, Guttal SS, Lekha K. Orbital prosthesis: a novel treatment approach. Int J Prosthodont Restor Dent. 2012;2(1):19–23.

    Google Scholar 

  29. Guttal SS, Patil NP, Thakur S, Kumar SMV, Kulkarni S. Implant-retained nasal prosthesis for a patient following partial rhinectomy: a clinical report. J Prosthodont. 2009;18:353–8.

    Article  Google Scholar 

  30. Guttal SS, Shanbhag S, Kulkarni SS, Thakur SL. Rehabilitation of a missing ear with an implant retained auricular prosthesis. J Indian Prosthodont Soc. 2015;15:70–5.

    Article  Google Scholar 

  31. Guttal SS, Desai J, Kudva A, Patil BR. Rehabilitation of orbital defect with silicone orbital prosthesis retained by dental implants. Indian J Ophthalmol. 2016;64:93–5.

    Article  Google Scholar 

  32. Melek LN. Tissue engineering in oral and maxillofacial reconstruction. Tanta Dent J. 2015;12(3):211–23.

    Article  Google Scholar 

  33. Zayed SM, Alshimy AM, Fahmy AE. Effect of surface treated silicon dioxide nanoparticles on some mechanical properties of maxillofacial silicone elastomer. Int J Biomater. 2014;2014:750398, 7 p.

    Article  CAS  Google Scholar 

  34. Van Schooneveld MM, Vucic E, Koole R, et al. Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett. 2008;8(8):2517–25.

    Article  CAS  Google Scholar 

  35. Shakir DA, Abdul-Ameer FM. Effect of nano-titanium oxide addition on some mechanical properties of silicone elastomers for maxillofacial prostheses. J Taibah Univ Med Sci. 2018;13(3):281–90.

    Google Scholar 

  36. Mitra A, Choudhary S, Garg H, et al. Maxillofacial prosthetic materials-an inclination towards silicones. J Clin Diagn Res. 2014;8(12):ZE08–13.

    Google Scholar 

  37. Alsmael MA, Moudhaffer M, Ali M, et al. The effect of nano titanium silicate addition on some properties of maxillofacial silicone material. J Res Med Dent Sci. 2018;6:127–32.

    Google Scholar 

  38. Salih SI, Oleiwi JK, Ali HM. Modification of silicone rubber by added PMMA and natural nanoparticle used for maxillofacial prosthesis applications. ARPN J Eng Appl Sci. 2019;14(4):781–91.

    CAS  Google Scholar 

  39. Yazdani J, Ahmadian E, Sharifi S, et al. A short view on nanohydroxyapatite as coating of dental implants. Biomed Pharmacother. 2018;105:553–7.

    Article  CAS  Google Scholar 

  40. García C, Ceré S, Durán A. Bioactive coatings deposited on titanium alloys. J Non-Cryst Solids. 2006;352(32–35):3488–95.

    Article  CAS  Google Scholar 

  41. Breding K, Jimbo R, Hayashi M, et al. The effect of hydroxyapatite nanocrystals on osseointegration of titanium implants: An in vivo rabbit study. Int J Dent. 2014;2014:171305.

    Article  CAS  Google Scholar 

  42. Svanborg LM, Hoffman M, Andersson M, et al. The effect of hydroxyapatite nanocrystals on early bone formation surrounding dental implants. Int J Oral Maxillofac Surg. 2011;40(3):308–15.

    Article  CAS  Google Scholar 

  43. Carinci F, Lauritano D, Bignozzi CA, et al. A new strategy against peri-implantitis: antibacterial internal coating. Int J Mol Sci. 2019;20(16):3897.

    Article  CAS  Google Scholar 

  44. Romanò CL, Tsuchiya H, Morelli I, et al. Antibacterial coating of implants: are we missing something? Bone Joint Res. 2019;8(5):199–206.

    Article  Google Scholar 

  45. Wafa H, Grimer RJ, Reddy K, et al. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Joint J. 2015;97-B(2):252–7.

    Article  CAS  Google Scholar 

  46. Akash RN, Guttal SS. Effect of incorporation of nano-oxides on color stability of maxillofacial silicone elastomer subjected to outdoor weathering. J Prosthodont. 2015;24:569–75.

    Article  CAS  Google Scholar 

  47. Kiat-Amnuay S, Mekayarajjananonth T, Powers JM, Chambers MS, Lemon JC. Interactions of pigments and opacifiers on color stability of MDX4–4210/type A maxillofacial elastomers subjected to artificial aging. J Prosthet Dent. 2006;95:249–57.

    Article  CAS  Google Scholar 

  48. Haug SP, Andres CJ, Moore BK. Color stability and colorant effect on maxillofacial elastomers. Part III: weathering effect on color. J Prosthet Dent. 1999;81:431–8.

    Article  CAS  Google Scholar 

  49. Polyzois GL. Color stability of facial silicone prosthetic polymers after outdoor weathering. J Prosthet Dent. 1999;82:447–50.

    Article  CAS  Google Scholar 

  50. Zardawi FM, Xiao K. Optimization of maxillofacial prosthesis. In: Prosthesis. London: IntechOpen; 2019. https://doi.org/10.5772/intechopen.85034.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sybil, D., Guttal,, S., Midha, S. (2021). Nanomaterials in Prosthetic Rehabilitation of Maxillofacial Defects. In: Chaughule, R.S., Dashaputra, R. (eds) Advances in Dental Implantology using Nanomaterials and Allied Technology Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-52207-0_3

Download citation

Publish with us

Policies and ethics