Skip to main content

Urban Measurements and Their Interpretation

  • Chapter
Springer Handbook of Atmospheric Measurements

Abstract

Urban environments create distinct challenges for successful atmospheric measurements primarily due to their complex surface structure (i. e., presence of buildings, a wide variety of construction materials, and heterogeneous land cover). In addition, human-generated emissions of heat, water, or pollutants may be considerable and can often vary dramatically in both space and time. Observational techniques have been adapted and theoretical frameworks developed to address some of these challenges of the urban environment. This chapter provides an overview of commonly used approaches to measure the urban atmosphere (including observations of temperature, humidity, wind, precipitation, radiation, the surface energy balance, and boundary layer height and dynamics), plus the key parameters used to quantify the urban environment (e. g., roughness length, surface cover fraction). Additional considerations that need to be made when measuring or interpreting urban measurements are discussed, alongside open issues that are the subject of ongoing research. Examples of various applications are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • UN Department of Economic and Social Affairs: 2018 Revision of world urbanization prospects – Multimedia library – United Nations Department of Economic and Social Affairs 2018). https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html, Accessed 21 July 2021

    Google Scholar 

  • L. Parshall, K. Gurney, S.A. Hammer, D. Mendoza, Y. Zhou, S. Geethakumar: Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States, Energy Policy 38(9), 4765–4782 (2010)

    Article  Google Scholar 

  • M. Fragkias, J. Lobo, D. Strumsky, K.C. Seto: Does size matter? Scaling of CO2 emissions and US urban areas, PLoS One 8(6), e64727 (2013)

    Article  Google Scholar 

  • D.E. Pataki, H.R. McCarthy, E. Litvak, S. Pincetl: Transpiration of urban forests in the Los Angeles metropolitan area, Ecol. Appl. 21(3), 661–677 (2011)

    Article  Google Scholar 

  • T.R. Oke, G. Mills, A. Christen, J.A. Voogt: Urban Climates (Cambridge Univ. Press, Cambridge 2017)

    Book  Google Scholar 

  • C.G. Collier: The impact of urban areas on weather, Q. J. R. Meteorol. Soc. 132(614), 1–25 (2006)

    Article  Google Scholar 

  • Met Office: Met Office WOW – Home page 2019). http://wow.metoffice.gov.uk/, Accessed 21 July 2021

    Google Scholar 

  • World Meteorological Organisation: GFCS – Global framework for climate services 2019). http://www.wmo.int/gfcs/, Accessed 21 July 2021

    Google Scholar 

  • A. Baklanov, C.S.B. Grimmond, D. Carlson, D. Terblanche, X. Tang, V. Bouchet, B. Lee, G. Langendijk, R.K. Kolli, A. Hovenspyan: From urban meteorology, climate and environment research to integrated city services, Urban Clim. 23, 330–341 (2018)

    Article  Google Scholar 

  • UN Habitat: Planning for climate change 2014). https://unhabitat.org/books/planning-for-climate-change-a-strategic-values-based-approach-for-urban-planners-cities-and-climate-change-initiative/, Accessed 21 July 2021

    Google Scholar 

  • UN Habitat: Goal 11: Sustainable development knowledge platform 2019). https://sustainabledevelopment.un.org/sdg11, Accessed 21 July 2021

    Google Scholar 

  • P. Pillai, B. Philips, P. Shyamsundar, K. Ahmed, L. Wang: Climate Risks and Adaptation in Asian Coastal Megacities (World Bank, Washington, D.C. 2010)

    Google Scholar 

  • E. Dickson, J.L. Baker, D. Hoornweg, T. Asmita: Urban Risk Assessments (World Bank, Washington, D.C. 2012)

    Book  Google Scholar 

  • World Bank: Urban development overview 2018). http://www.worldbank.org/en/topic/urbandevelopment/overview#2, Accessed 21 July 2021

    Google Scholar 

  • S. Grimmond, W. Secretariat: Towards integrated urban weather, environment and climate services, World Meteorol. Organ. Bull. 63(1), 10–14 (2014)

    Google Scholar 

  • H.-P. Schmid, C.S.B. Grimmond, H.A. Cleugh, T.R. Oke: Spatial variability of energy fluxes in urban terain, Boundary-Layer Meteorol. 54, 249–276 (1991)

    Article  Google Scholar 

  • T.R. Oke: The energetic basis of the urban heat island, Q. J. R. Meteorol. Soc. 108(455), 1–24 (1982)

    Google Scholar 

  • C.S.B. Grimmond, T.R. Oke, H.A. Cleugh: The role of ‘rural’ in comparisons of observed suburban-rural flux differences, Int. Assoc. Hydrol. Sci. Publ. 212, 165–174 (1993)

    Google Scholar 

  • P. Gober, B. Brazel, R. Quay, W. Myint, S. Grossman-Clarke, A. Miller, S. Rossi: Using watered landscapes to manipulate urban heat island effects: How much water will it take to cool Phoenix?, J. Am. Plan. Assoc. 76(1), 109–121 (2009)

    Article  Google Scholar 

  • P. Ramamurthy, E.R. Pardyjak: Toward understanding the behavior of carbon dioxide and surface energy fluxes in the urbanized semi-arid Salt Lake Valley, Utah, USA, Atmos. Environ. 45(1), 73–84 (2011)

    Article  Google Scholar 

  • L. Järvi, A. Nordbo, H. Junninen, A. Riikonen, J. Moilanen, E. Nikinmaa, T. Vesala: Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010, Atmos. Chem. Phys. 12(18), 8475–8489 (2012)

    Article  Google Scholar 

  • C.S.B. Grimmond: The suburban energy balance: Methodological considerations and results for a mid-latitude west coast city under winter and spring conditions, Int. J. Climatol. 12(5), 481–497 (1992)

    Article  Google Scholar 

  • D.J. Sailor: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment, Int. J. Climatol. 31, 189–199 (2011)

    Article  Google Scholar 

  • F. Lindberg, C.S.B. Grimmond, A. Gabey, B. Huang, C.W. Kent, T. Sun, N.E. Theeuwes, L. Järvi, H.C. Ward, I. Capel-Timms, Y. Chang, P. Jonsson, N. Krave, D. Liu, D. Meyer, K.F.G. Olofson, J. Tan, D. Wästberg, L. Xue, Z. Zhang: Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services, Environ. Model. Softw. 99, 70–87 (2018)

    Article  Google Scholar 

  • S.M. Roberts, T.R. Oke, C.S.B. Grimmond, J.A. Voogt: Comparison of four methods to estimate urban heat storage, J. Appl. Meteorol. Climatol. 45(12), 1766–1781 (2006)

    Article  Google Scholar 

  • B. Offerle, C.S.B. Grimmond, K. Fortuniak: Heat storage and anthropogenic heat flux in relation to the energy balance of a Central European city centre, Int. J. Climatol. 25(10), 1405–1419 (2005)

    Article  Google Scholar 

  • H.E. Landsberg: The Urban Climate (Academic Press, Cambridge 1981)

    Google Scholar 

  • G. Mills: Luke Howard and The Climate of London, Weather 63(6), 153–157 (2008)

    Article  Google Scholar 

  • L. Howard: The Climate of London, Deduced from Meteorological Observations Made in the Metropolis, Vol. I (W. Phillips, London 1818)

    Google Scholar 

  • L. Howard: The Climate of London. Deduced from Meteorological Observations, Made at Different Places in the Neighbourhood of the Metropolis, Vol. II (W. Phillips, London 1820)

    Google Scholar 

  • W. Schmidt: Die Verteilung der Minimumtemperaturen in der Frostnacht des 12.5.1927 im Gemeindegebiet von Wien, Fortschr. Landwirtsch. 2(21), 681–686 (1927)

    Google Scholar 

  • W.P. Lowry: Urban effects on precipitation amount, Prog. Phys. Geogr. 22(4), 477–520 (1998)

    Article  Google Scholar 

  • J.M. Shepherd: A review of current investigations of urban-induced rainfall and recommendations for the future, Earth Interact. 9(12), 1–27 (2005)

    Article  Google Scholar 

  • R. Bornstein, Q. Lin: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies, Atmos. Environ. 34(3), 507–516 (2000)

    Article  Google Scholar 

  • D. Rosenfeld: Suppression of rain and snow by urban and industrial air pollution, Science 287(5459), 1793–1796 (2000)

    Article  Google Scholar 

  • S.A. Changnon, F.A. Huff, R.G. Semonin: METROMEX: An investigation of inadvertent weather modification, Bull. Am. Meteorol. Soc. 52(10), 958–968 (1971)

    Article  Google Scholar 

  • S.A. Changnon: The La Porte weather anomaly – Fact or fiction?, Bull. Am. Meteorol. Soc. 49(1), 4–11 (1968)

    Article  Google Scholar 

  • E.X. Berry, R.W. Beadle: Project METROMEX, Bull. Am. Meteorol. Soc. 55(2), 86–121 (1974)

    Article  Google Scholar 

  • Principal Investigators of METROMEX: METROMEX update, Bull. Am. Meteorol. Soc. 57(3), 304–308 (2018)

    Google Scholar 

  • D. Doll, J.K.S. Ching, J. Kaneshiro: Parameterization of subsurface heating for soil and concrete using net radiation data, Boundary-Layer Meteorol. 32(4), 351–372 (1985)

    Article  Google Scholar 

  • J.K.S. Ching, J.F. Clarke, J.M. Godowitch: Modulation of heat flux by different scales of advection in an urban environment, Boundary-Layer Meteorol. 25(2), 171–191 (1983)

    Article  Google Scholar 

  • J.M. Godowitch, J.K.S. Ching, J.F. Clarke: Evolution of the nocturnal inversion layer at an urban and nonurban location, J. Appl. Meteorol. 24(8), 791–805 (1985)

    Article  Google Scholar 

  • J.M. Godowitch, J.K.S. Ching, J.F. Clarke: Spatial variation of the evolution and structure of the urban boundary layer, Boundary-Layer Meteorol. 38(3), 249–272 (1987)

    Article  Google Scholar 

  • S. Grimmond, A. Christen: Flux measurements in urban ecosystems, FluxLetter Newsl. FLUXNET 5(1), 1–8 (2012)

    Google Scholar 

  • Y. Liu, H.Z. Liu, L. Wang: The vertical distribution characteristics of integral turbulence statistics in the atmospheric boundary layer over an urban area in Beijing, Sci. China Earth Sci. 60(8), 1533–1545 (2017)

    Article  Google Scholar 

  • M. Kanda, R. Moriwaki, M. Roth, T. Oke: Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry, Boundary-Layer Meteorol. 105(1), 177–193 (2002)

    Article  Google Scholar 

  • J.-P. Lagouarde, M. Irvine, J.-M. Bonnefond, C.S.B. Grimmond, N. Long, T.R. Oke, J.A. Salmond, B. Offerle: Monitoring the sensible heat flux over urban areas using large aperture scintillometry: Case study of Marseille city during the ESCOMPTE experiment, Boundary-Layer Meteorol. 118(3), 449–476 (2006)

    Article  Google Scholar 

  • H.C. Ward, J.G. Evans, C.S.B. Grimmond: Multi-scale sensible heat fluxes in the suburban environment from large-aperture scintillometry and eddy covariance, Boundary-Layer Meteorol. 152(1), 65–89 (2014)

    Article  Google Scholar 

  • H.C. Ward, J.G. Evans, C.S.B. Grimmond, J. Bradford: Infrared and millimetre-wave scintillometry in the suburban environment – Part 1: Structure parameters, Atmos. Meas. Tech. 8(3), 1385–1405 (2015)

    Article  Google Scholar 

  • M. Zieliński, K. Fortuniak, W. Pawlak, M. Siedlecki: Influence of mean rooftop-level estimation method on sensible heat flux retrieved from a large-aperture scintillometer over a city centre, Boundary-Layer Meteorol. 164(2), 281–301 (2017)

    Article  Google Scholar 

  • M. Zieliński, K. Fortuniak, W. Pawlak, M. Siedlecki: Long-term turbulent sensible-heat-flux measurements with a large-aperture scintillometer in the centre of Łódź, Central Poland, Boundary-Layer Meteorol. 167, 469–492 (2018)

    Article  Google Scholar 

  • B. Crawford, C.S.B. Grimmond, H.C. Ward, W. Morrison, S. Kotthaus: Spatial and temporal patterns of surface–atmosphere energy exchange in a dense urban environment using scintillometry, Q. J. R. Meteorol. Soc. 143(703), 817–833 (2017)

    Article  Google Scholar 

  • H. Sugawara, A. Inagaki, M. Roth, M. Kanda: Evaluation of scintillometery measurements of fluxes of momentum and sensible heat in the roughness sublayer, Theor. Appl. Climatol. 126(3–4), 673–681 (2016)

    Article  Google Scholar 

  • S.-H. Lee, J.-H. Lee, B.-Y. Kim: Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer, Adv. Atmos. Sci. 32(8), 1092–1105 (2015)

    Article  Google Scholar 

  • J.A. Salmond, M. Roth, T.R. Oke, A. Christen, J.A. Voogt: Can surface-cover tiles be summed to give neighborhood fluxes in cities?, J. Appl. Meteorol. Climatol. 51(1), 133–149 (2012)

    Article  Google Scholar 

  • H.C. Ward, J.G. Evans, C.S.B. Grimmond: Infrared and millimetre-wave scintillometry in the suburban environment – Part 2: Large-area sensible and latent heat fluxes, Atmos. Meas. Tech. 8(3), 1407–1424 (2015)

    Article  Google Scholar 

  • S. Di Sabatino, P. Kastner-Klein, R. Berkowicz, R.E. Britter, E. Fedorovich: The modelling of turbulence from traffic in urban dispersion models – Part I: Theoretical considerations, Environ. Fluid Mech. 3(2), 129–143 (2003)

    Article  Google Scholar 

  • K.J. Allwine, J. Shinn, G. Streit, K. Clawson, M. Brown: Overview of URBAN 2000: A multiscale field study of dispersion through an urban environment, Bull. Am. Meteorol. Soc. 83(4), 521–536 (2002)

    Article  Google Scholar 

  • K.J. Allwine, M.J. Leach, J.C.L.W. Stockham, J.S. Shinn, R.P. Hosker, J.F. Bowers, J.C. Pace: Overview of Joint Urban 2003: An atmospheric dispersion study in Oklahoma City. In: Symp. Plan. Nowcast. Forecast. Urban Zone Eighth Symp. Integr Obs. Assim. Syst. Atmos. Oceans Land Surf. (2004) p. J7.1

    Google Scholar 

  • S.R. Hanna, J. White, Y. Zhou, A. Kosheleva: Analysis of Joint Urban 2003 (JU2003) and Madison Square Garden 2005 (MSG05) meteorological and tracer data (2006 – Annual2006_6urban). In: 86th AMS Ann. Meet, Atlanta (2006) p. j7.1

    Google Scholar 

  • S.J. Arnold, H. ApSimon, J. Barlow, S. Belcher, M. Bell, J.W. Boddy, R. Britter, H. Cheng, R. Clark, R.N. Colvile, S. Dimitroulopoulou, A. Dobre, B. Greally, S. Kaur, A. Knights, T. Lawton, A. Makepeace, D. Martin, M. Neophytou, S. Neville, M. Nieuwenhuijsen, G. Nickless, C. Price, A. Robins, D. Shallcross, P. Simmonds, R.J. Smalley, J. Tate, A.S. Tomlin, H. Wang, P. Walsh: Introduction to the DAPPLE air pollution project, Sci. Total Environ. 332(1–3), 139–153 (2004)

    Article  Google Scholar 

  • R.M. Harrison, M. Dall'Osto, D.C.S. Beddows, A.J. Thorpe, W.J. Bloss, J.D. Allan, H. Coe, J.R. Dorsey, M. Gallagher, C. Martin, J. Whitehead, P.I. Williams, R.L. Jones, J.M. Langridge, A.K. Benton, S.M. Ball, B. Langford, C.N. Hewitt, B. Davison, D. Martin, K.F. Petersson, S.J. Henshaw, I.R. White, D.E. Shallcross, J.F. Barlow, T. Dunbar, F. Davies, E. Nemitz, G.J. Phillips, C. Helfter, C.F. Di Marco, S. Smith: Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): An overview of the REPARTEE experiment and its conclusions, Atmos. Chem. Phys. 12(6), 3065–3114 (2012)

    Article  Google Scholar 

  • S.I. Bohnenstengel, S.E. Belcher: Meteorology, air quality, and health in London: The ClearfLo project, Bull. Am. Meteorol. Soc. 96(5), 779–804 (2015)

    Article  Google Scholar 

  • B. Cros, P. Durand, H. Cachier, P. Drobinski, E. Fréjafon, C. Kottmeier, P.E. Perros, V.-H. Peuch, J.-L. Ponche, D. Robin, F. Said, G. Toupance, H. Wortham: The ESCOMPTE program: An overview, Atmos. Res. 69(3–4), 241–279 (2004)

    Article  Google Scholar 

  • P.G. Mestayer, P. Durand, P. Augustin, S. Bastin, J.-M. Bonnefond, B. Bénech, B. Campistron, A. Coppalle, H. Delbarre, B. Dousset, P. Drobinski, A. Druilhet, E. Fréjafon, C.S.B. Grimmond, D. Groleau, M. Irvine, C. Kergomard, S. Kermadi, J.-P. Lagouarde, A. Lemonsu, F. Lohou, N. Long, V. Masson, C. Moppert, J. Noilhan, B. Offerle, T.R. Oke, G. Pigeon, V. Puygrenier, S. Roberts, J.-M. Rosant, F. Sanïd, J. Salmond, M. Talbaut, J. Voogt: The urban boundary-layer field campaign in Marseille (UBL/CLU-ESCOMPTE): Set-up and first results, Boundary-Layer Meteorol. 114, 315–365 (2005)

    Article  Google Scholar 

  • C.L. Muller, L. Chapman, C.S.B. Grimmond, D.T. Young, X. Cai: Sensors and the city: A review of urban meteorological networks, Int. J. Climatol. 33(7), 1585–1600 (2013)

    Article  Google Scholar 

  • C.L. Muller, L. Chapman, C.S.B. Grimmond, D.T. Young, X.-M. Cai: Toward a standardized metadata protocol for urban meteorological networks, Bull. Am. Meteorol. Soc. 94(8), 1161–1185 (2013)

    Article  Google Scholar 

  • L. Chapman, C.L. Muller: The Birmingham Urban Climate Laboratory: An open meteorological test bed and challenges of the smart city, Bull. Am. Meteorol. Soc. 96(9), 1545–1560 (2015)

    Article  Google Scholar 

  • E.L. Warren, D.T. Young, L. Chapman, C. Muller, C.S.B. Grimmond, X.-M. Cai: The Birmingham Urban Climate Laboratory – A high density, urban meteorological dataset, from 2012–2014, Sci. Data 3, 160038 (2016)

    Article  Google Scholar 

  • J.B. Basara, B.G. Illston, C.A. Fiebrich, P.D. Browder, C.R. Morgan, A. McCombs, J.P. Bostic, R.A. McPherson, A.J. Schroeder, K.C. Crawford: The Oklahoma City micronet, Meteorol. Appl. 18(3), 252–261 (2011)

    Google Scholar 

  • S. Pulkkinen, V. Chandrasekar, A.-M. Harri: Nowcasting of precipitation in the high-resolution Dallas–Fort Worth (DFW) urban radar remote sensing network, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(8), 2773–2787 (2018)

    Article  Google Scholar 

  • J. Tan, L. Yang, C.S.B. Grimmond, J. Shi, W. Gu, Y. Chang, P. Hu, J. Sun, X. Ao, Z. Han: Urban integrated meteorological observations: Practice and experience in Shanghai, China, Bull. Am. Meteorol. Soc. 96(1), 85–102 (2015)

    Article  Google Scholar 

  • M.-S. Park, S.-H. Park, J.-H. Chae, M.-H. Choi, Y. Song, M. Kang, J.-W. Roh: High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea, Atmos. Meas. Tech. 10(4), 1575–1594 (2017)

    Article  Google Scholar 

  • B.E.A. Fisher, J.J. Erbrink, S. Finardi, P. Jeannet, S. Joffre, M.G. Morselli, U. Pechinger, P. Seibert, D.J. Thomson: Cost Action 710 – Final Report: Harmonisation of the Pre-processing of Meteorological Data for Atmospheric Dispersion Models (Office for Official Publications of the European Communities, Luxembourg 1998)

    Google Scholar 

  • P. Seibert, F. Beyrich, S.E. Gryning, S. Joffre, A. Rasmussen, P. Tercier: Review and intercomparison of operational methods for the determination of the mixing height, Atmos. Environ. 34(7), 1001–1027 (2000)

    Article  Google Scholar 

  • W.R. Moninger, R.D. Mamrosh, P.M. Pauley: Automated meteorological reports from commercial aircraft, Bull. Am. Meteorol. Soc. 84(2), 203–216 (2003)

    Article  Google Scholar 

  • C. Drüe, W. Frey, A. Hoff, T. Hauf: Aircraft type-specific errors in AMDAR weather reports from commercial aircraft, Q. J. R. Meteorol. Soc. 134(630), 229–239 (2008)

    Article  Google Scholar 

  • C.S.B. Grimmond: Progress in measuring and observing the urban atmosphere, Theor. Appl. Climatol. 84(1–3), 3–22 (2006)

    Article  Google Scholar 

  • J.F. Barlow: Progress in observing and modelling the urban boundary layer, Urban Clim. 10, 216–240 (2014)

    Article  Google Scholar 

  • W.F. Dabberdt: Urban meteorological measurements. In: Urban Meteorology: Forecasting, Monitoring, and Meeting Users’ Needs, ed. by Committee on Meteorology (National Academies Press, Washington, D.C. 2012) pp. 137–148

    Google Scholar 

  • E.R. Pardyjak, R. Stoll: Improving measurement technology for the design of sustainable cities, Meas. Sci. Technol. 28(9), 092001 (2017)

    Article  Google Scholar 

  • M. Kanda: Progress in the scale modeling of urban climate: Review, Theor. Appl. Climatol. 84(1–3), 23–33 (2006)

    Article  Google Scholar 

  • C.S.B. Grimmond: Observing London: Weather Data Needed for London to Thrive (London Climate Change Partnership, London 2013)

    Google Scholar 

  • C.S.B. Grimmond, M. Roth, T.R. Oke, Y.C. Au, M. Best, R. Betts, G. Carmichael, H. Cleugh, W. Dabberdt, R. Emmanuel, E. Freitas, K. Fortuniak, S. Hanna, P. Klein, L.S. Kalkstein, C.H. Liu, A. Nickson, D. Pearlmutter, D. Sailor, J. Voogt: Climate and more sustainable cities: Climate information for improved planning and management of cities (producers/capabilities perspective), Procedia Environ. Sci. 1(1), 247–274 (2010)

    Article  Google Scholar 

  • National Research Council: Urban Meteorology: Forecasting, Monitoring, and Meeting Users' Needs (National Academies Press, Washington, D.C. 2012)

    Google Scholar 

  • W.F. Dabberdt, M.A. Carroll, D. Baumgardner, G. Carmichael, R. Cohen, T. Dye, J. Ellis, G. Grell, S. Grimmond, S. Hanna, J. Irwin, B. Lamb, S. Madronich, J. McQueen, J. Meagher, T. Odman, J. Pleim, H.P. Schmid, D.L. Westphal: Meteorological research needs for improved air quality forecasting, Bull. Am. Meteorol. Soc. 85(4), 563–586 (2004)

    Article  Google Scholar 

  • J.A. Voogt, T.R. Oke: Thermal remote sensing of urban climates, Remote Sens. Environ. 86(3), 370–384 (2003)

    Article  Google Scholar 

  • Q. Weng: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends, ISPRS J. Photogramm. Remote Sens. 64(4), 335–344 (2009)

    Article  Google Scholar 

  • I.D. Stewart: A systematic review and scientific critique of methodology in modern urban heat island literature, Int. J. Climatol. 31(2), 200–217 (2011)

    Article  Google Scholar 

  • C.S.B. Grimmond, T.R. Oke: Aerodynamic properties of urban areas derived from analysis of surface form, J. Appl. Meteorol. 38(9), 1262–1292 (1999)

    Article  Google Scholar 

  • M. Roth: Review of atmospheric turbulence over cities, Q. J. R. Meteorol. Soc. 126(564), 941–990 (2000)

    Article  Google Scholar 

  • The Local: Smog Monday: Paris air pollution levels to hit dangerous high 2018). https://www.thelocal.fr/20180219/smog-monday-paris-air-pollution-levels-to-hit-dangerous-high, Accessed 21 July 2021

    Google Scholar 

  • P. Chandola: Beijing imposes traffic measures to curb air pollution 2015). https://www.downtoearth.org.in/news/air/beijing-imposes-traffic-measures-to-curb-air-pollution-50659, Accessed 21 July 2021

    Google Scholar 

  • M.-F. King, H.L. Gough, C. Halios, J.F. Barlow, A. Robertson, R. Hoxey, C.J. Noakes: Investigating the influence of neighbouring structures on natural ventilation potential of a full-scale cubical building using time-dependent CFD, J. Wind Eng. Ind. Aerodyn. 169, 265–279 (2017)

    Article  Google Scholar 

  • J.F. Barlow, J. Harrison, A.G. Robins, C.R. Wood: A wind-tunnel study of flow distortion at a meteorological sensor on top of the BT Tower, London, UK, J. Wind Eng. Ind. Aerodyn. 99(9), 899–907 (2011)

    Article  Google Scholar 

  • H.L. Gough, Z. Luo, C.H. Halios, M.-F. King, C.J. Noakes, C.S.B. Grimmond, J.F. Barlow, R. Hoxey, A.D. Quinn: Field measurement of natural ventilation rate in an idealised full-scale building located in a staggered urban array: Comparison between tracer gas and pressure-based methods, Build. Environ. 137, 246–256 (2018)

    Article  Google Scholar 

  • I. Eliasson, B. Offerle, C.S.B. Grimmond, S. Lindqvist: Wind fields and turbulence statistics in an urban street canyon, Atmos. Environ. 40(1), 1–16 (2006)

    Article  Google Scholar 

  • M.W. Rotach, R. Vogt, C. Bernhofer, E. Batchvarova, A. Christen, A. Clappier, B. Feddersen, S.-E. Gryning, G. Martucci, H. Mayer, V. Mitev, T.R. Oke, E. Parlow, H. Richner, M. Roth, Y.-A. Roulet, D. Ruffieux, J.A. Salmond, M. Schatzmann, J.A. Voogt: BUBBLE – An urban boundary layer meteorology project, Theor. Appl. Climatol. 81(3–4), 231–261 (2005)

    Article  Google Scholar 

  • J. Ching, M. Brown, S. Burian, F. Chen, R. Cionco, A. Hanna, T. Hultgren, T. McPherson, D. Sailor, H. Taha, D. Williams: National urban database and access portal tool, Bull. Am. Meteorol. Soc. 90(8), 1157–1168 (2009)

    Article  Google Scholar 

  • J. Ching, G. Mills, B. Bechtel, L. See, J. Feddema, X. Wang, C. Ren, O. Brousse, A. Martilli, M. Neophytou, P. Mouzourides, I. Stewart, A. Hanna, E. Ng, M. Foley, P. Alexander, D. Aliaga, D. Niyogi, A. Shreevastava, P. Bhalachandran, V. Masson, J. Hidalgo, J. Fung, M. Andrade, A. Baklanov, W. Dai, G. Milcinski, M. Demuzere, N. Brunsell, M. Pesaresi, S. Miao, Q. Mu, F. Chen, N. Theeuwes: WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the anthropocene, Bull. Am. Meteorol. Soc. 99(9), 1907–1924 (2018)

    Article  Google Scholar 

  • R.A. Spronken-Smith, T.R. Oke: Scale modelling of nocturnal cooling in urban parks, Boundary-Layer Meteorol. 93(2), 287–312 (1999)

    Article  Google Scholar 

  • F. Lindberg, C.S.B. Grimmond: Continuous sky view factor maps from high resolution urban digital elevation models, Clim. Res. 42(3), 177–183 (2010)

    Article  Google Scholar 

  • M. Hussain, B.E. Lee: A wind tunnel study of the mean pressure forces acting on large groups of low-rise buildings, J. Wind Eng. Ind. Aerodyn. 6(3–4), 207–225 (1980)

    Article  Google Scholar 

  • C.W. Kent, S. Grimmon, J. Barlow, D. Gatey, S. Kotthaus, F. Lindberg, C.H. Halios: Evaluation of urban local-scale aerodynamic parameters: Implications for the vertical profile of wind speed and for source areas, Boundary-Layer Meteorol. 164(2), 183–213 (2017)

    Article  Google Scholar 

  • M. Kanda, A. Inagaki, T. Miyamoto, M. Gryschka, S. Raasch: A new aerodynamic parametrization for real urban surfaces, Boundary-Layer Meteorol. 148(2), 357–377 (2013)

    Article  Google Scholar 

  • J.T. Millward-Hopkins, A.S. Tomlin, L. Ma, D. Ingham, M. Pourkashanian: Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights, Boundary-Layer Meteorol. 141(3), 443–465 (2011)

    Article  Google Scholar 

  • C.S.B. Grimmond, T.R. Oke: Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS), J. Appl. Meteorol. 41(7), 792–810 (2002)

    Article  Google Scholar 

  • A. Christen, R. Vogt: Energy and radiation balance of a central European city, Int. J. Climatol. 24(11), 1395–1421 (2004)

    Article  Google Scholar 

  • B. Offerle, C.S.B. Grimmond, K. Fortuniak, K. Kłysik, T.R. Oke: Temporal variations in heat fluxes over a central European city centre, Theor. Appl. Climatol. 84(1–3), 103–115 (2005)

    Google Scholar 

  • L. Järvi, C.S.B. Grimmond, A. Christen: The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver, J. Hydrol. 411(3–4), 219–237 (2011)

    Article  Google Scholar 

  • I.D. Stewart, T.R. Oke: Local climate zones for urban temperature studies, Bull. Am. Meteorol. Soc. 93(12), 1879–1900 (2012)

    Article  Google Scholar 

  • B.G. Heusinkveld, G.J. Steeneveld, L.W.A. van Hove, C.M.J. Jacobs, A.A.M. Holtslag: Spatial variability of the Rotterdam urban heat island as influenced by urban land use, J. Geophys. Res. Atmos. 119(2), 677–692 (2014)

    Article  Google Scholar 

  • L. Chapman, C. Bell, S. Bell: Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations, Int. J. Climatol. 37(9), 3597–3605 (2017)

    Article  Google Scholar 

  • A. Overeem, J.C.R. Robinson, H. Leijnse, G.J. Steeneveld, B.K.P. Horn, R. Uijlenhoet: Crowdsourcing urban air temperatures from smartphone battery temperatures, Geophys. Res. Lett. 40(15), 4081–4085 (2013)

    Article  Google Scholar 

  • F. Meier, D. Fenner, T. Grassmann, M. Otto, D. Scherer: Crowdsourcing air temperature from citizen weather stations for urban climate research, Urban Clim. 19, 170–191 (2017)

    Article  Google Scholar 

  • M. Shahrestani, R. Yao, Z. Luo, E. Turkbeyler, H. Davies: A field study of urban microclimates in London, Renew. Energy 73, 3–9 (2015)

    Article  Google Scholar 

  • A. Christen, F. Meier, D. Scherer: High-frequency fluctuations of surface temperatures in an urban environment, Theor. Appl. Climatol. 108(1–2), 301–324 (2012)

    Article  Google Scholar 

  • W. Morrison, S. Kotthaus, C.S.B. Grimmond, A. Inagaki, T. Yin, J.-P. Gastellu-Etchegorry, M. Kanda, C.J. Merchant: A novel method to obtain three-dimensional urban surface temperature from ground-based thermography, Remote Sens. Environ. 215, 268–283 (2018)

    Article  Google Scholar 

  • B. Crawford, S.B. Grimmond, A. Gabey, M. Marconcini, H.C. Ward, C.W. Kent: Variability of urban surface temperatures and implications for aerodynamic energy exchange in unstable conditions, Q. J. R. Meteorol. Soc. 144(715), 1719–1741 (2018)

    Article  Google Scholar 

  • C. Adderley, A. Christen, J.A. Voogt: The effect of radiometer placement and view on inferred directional and hemispheric radiometric temperatures of an urban canopy, Atmos. Meas. Tech. 8, 2699–2714 (2015)

    Article  Google Scholar 

  • J.A. Voogt, T.R. Oke: Complete urban surface temperatures, J. Appl. Meteorol. 36(9), 1117–1132 (1997)

    Article  Google Scholar 

  • S. Kotthaus, T.E.L. Smith, M.J. Wooster, C.S.B. Grimmond: Derivation of an urban materials spectral library through emittance and reflectance spectroscopy, ISPRS J. Photogramm. Remote Sens. 94, 194–212 (2014)

    Article  Google Scholar 

  • N. Chrysoulakis, C. Grimmond, C. Feigenwinter, F. Lindberg, J.-P. Gastellu-Etchegorry, M. Marconcini, Z. Mitraka, S. Stagakis, B. Crawford, F. Olofson, L. Landier, W. Morrison, E. Parlow: Urban energy exchanges monitoring from space, Sci. Rep. 8(1), 11498 (2018)

    Article  Google Scholar 

  • C. Small, D. Sousa, G. Yetman, C. Elvidge, K. MacManus: Decades of urban growth and development on the Asian megadeltas, Glob. Planet. Change 165, 62–89 (2018)

    Article  Google Scholar 

  • M. Roth, T.R. Oke, W.J. Emery: Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology, Int. J. Remote Sens. 10(11), 1699–1720 (1989)

    Article  Google Scholar 

  • W. Morrison, S. Kotthaus, C.S.B. Grimmond, A. Inagaki, T. Yin, J.-P. Gastellu-Etchegorry, M. Kanda, C.J. Merchant: A novel method to obtain three-dimensional urban surface temperature from ground-based thermography, Remote Sens. Environ. 215, 268–283 (2018)

    Article  Google Scholar 

  • C.A. Kennedy, I. Stewart, A. Facchini, I. Cersosimo, R. Mele, B. Chen, M. Uda, A. Kansal, A. Chiu, K. Kim, C. Dubeux, E. Lebre La Rovere, B. Cunha, S. Pincetl, J. Keirstead, S. Barles, S. Pusaka, J. Gunawan, M. Adegbile, M. Nazariha, S. Hoque, P.J. Marcotullio, F. González Otharán, T. Genena, N. Ibrahim, R. Farooqui, G. Cervantes, A. Duran Sahin: Energy and material flows of megacities, Proc. Natl. Acad. Sci. U.S.A. 112(19), 5985–5990 (2015)

    Article  Google Scholar 

  • I.D. Stewart, C.A. Kennedy: Metabolic heat production by human and animal populations in cities, Int. J. Biometeorol. 61(7), 1159–1171 (2017)

    Article  Google Scholar 

  • S. Kotthaus, C.S.B. Grimmond: Identification of micro-scale anthropogenic CO2, heat and moisture sources – Processing eddy covariance fluxes for a dense urban environment, Atmos. Environ. 57, 301–316 (2012)

    Article  Google Scholar 

  • H.C. Ward: Scintillometry in urban and complex environments: A review, Meas. Sci. Technol. 28(6), 064005 (2017)

    Article  Google Scholar 

  • D.P. Johnson, A. Stanforth, V. Lulla, G. Luber: Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data, Appl. Geogr. 35(1–2), 23–31 (2012)

    Article  Google Scholar 

  • K.E. Kunkel, S.A. Changnon, B.C. Reinke, R.W. Arritt: The July 1995 heat wave in the Midwest: A climatic perspective and critical weather factors, Bull. Am. Meteorol. Soc. 77(7), 1507–1518 (1996)

    Article  Google Scholar 

  • S.A. Changnon, K.E. Kunkel, B.C. Reinke: Impacts and responses to the 1995 heat wave: A call to action, Bull. Am. Meteorol. Soc. 77(7), 1497–1506 (1996)

    Article  Google Scholar 

  • M. Safi: India slashes heatwave death toll with series of low-cost measures 2018). https://www.theguardian.com/world/2018/jun/02/india-heat-wave-deaths-public-health-measures, Accessed 21 July 2021

    Google Scholar 

  • S.E. Lane, J.F. Barlow, C.R. Wood: An assessment of a three-beam Doppler lidar wind profiling method for use in urban areas, J. Wind Eng. Ind. Aerodyn. 119, 53–59 (2013)

    Article  Google Scholar 

  • X. Xie, Z. Huang, J. Wang: Impact of building configuration on air quality in street canyon, Atmos. Environ. 39(25), 4519–4530 (2005)

    Article  Google Scholar 

  • R.W. Macdonald, R.F. Griffiths, D.J. Hall: A comparison of results from scaled field and wind tunnel modelling of dispersion in arrays of obstacles, Atmos. Environ. 32(22), 3845–3862 (1998)

    Article  Google Scholar 

  • J. Song, S. Fan, W. Lin, L. Mottet, H. Woodward, M. Davies Wykes, R. Arcucci, D. Xiao, J.-E. Debay, H. ApSimon, E. Aristodemou, D. Birch, M. Carpentieri, F. Fang, M. Herzog, G.R. Hunt, R.L. Jones, C. Pain, D. Pavlidis, A.G. Robins, C.A. Short, P.F. Linden: Natural ventilation in cities: The implications of fluid mechanics, Build. Res. Inf. 46(8), 809–828 (2018)

    Article  Google Scholar 

  • X.C. Liu, T.C. Gao, L. Liu: A comparison of rainfall measurements from multiple instruments, Atmos. Meas. Tech. 6(7), 1585–1595 (2013)

    Article  Google Scholar 

  • C.L. Ryder, R. Toumi: An urban solar flux island: Measurements from London, Atmos. Environ. 45(20), 3414–3423 (2011)

    Article  Google Scholar 

  • M. Aida: Urban albedo as a function of the urban structure? A model experiment, Boundary-Layer Meteorol. 23(4), 405–413 (1982)

    Article  Google Scholar 

  • M. Santamouris, A. Synnefa, T. Karlessi: Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions, Sol. Energy 85(12), 3085–3102 (2011)

    Article  Google Scholar 

  • F. Lindberg, C.S.B. Grimmond, A. Gabey, B. Huang, C.W. Kent, T. Sun, N.E. Theeuwes, L. Järvi, H.C. Ward, I. Capel-Timms, Y. Chang, P. Jonsson, N. Krave, D. Liu, D. Meyer, K.F.G. Olofson, J. Tan, D. Wästberg, L. Xue, Z. Zhang: Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services, Environ. Model. Softw. 99, 70–87 (2018)

    Article  Google Scholar 

  • G. Desthieux, C. Carneiro, R. Camponovo, P. Ineichen, E. Morello, A. Boulmier, N. Abdennadher, S. Dervey, C. Ellert: Solar energy potential assessment on rooftops and facades in large built environments based on LiDAR data, image processing, and cloud computing. Methodological background, application, and validation in Geneva (Solar Cadaster), Front. Built Environ. 4, 14 (2018)

    Article  Google Scholar 

  • J. Zhang, R. Verschae, S. Nobuhara, J.-F. Lalonde: Deep photovoltaic nowcasting, Sol. Energy 176, 267–276 (2018)

    Article  Google Scholar 

  • F. Lindberg, C.S.B. Grimmond: Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London, Urban Ecosyst. 14(4), 617–634 (2011)

    Article  Google Scholar 

  • F. Lindberg, B. Holmer, S. Thorsson: SOLWEIG 1.0 – Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings, Int. J. Biometeorol. 52(7), 697–713 (2008)

    Article  Google Scholar 

  • E. Johansson, S. Thorsson, R. Emmanuel, E. Krüger: Instruments and methods in outdoor thermal comfort studies – The need for standardization, Urban Clim. 10(2), 346–366 (2014)

    Article  Google Scholar 

  • S. Thorsson, F. Lindberg, I. Eliasson, B. Holmer: Different methods for estimating the mean radiant temperature in an outdoor urban setting, Int. J. Climatol. 27, 1983–1993 (2007)

    Article  Google Scholar 

  • K. Richards: Hardware scale modelling of summertime patterns of urban dew and surface moisture in Vancouver, BC, Canada, Atmos. Res. 64(1–4), 313–321 (2002)

    Article  Google Scholar 

  • K. Richards: Observation and simulation of dew in rural and urban environments, Prog. Phys. Geogr. 28, 76–94 (2004)

    Article  Google Scholar 

  • J.R. Simpson, E.G. McPherson: The effects of roof albedo modification on cooling loads of scale model residences in Tucson, Arizona, Energy Build. 25(2), 127–137 (1997)

    Article  Google Scholar 

  • W.E. Reifsnyder: Radiation geometry in the measurement and interpretation of radiation balance, Agric. Meteorol. 4(4), 255–265 (1967)

    Article  Google Scholar 

  • S. Kotthaus, C.S.B. Grimmond: Energy exchange in a dense urban environment – Part II: Impact of spatial heterogeneity of the surface, Urban Clim. 10(2), 281–307 (2013)

    Google Scholar 

  • S. Kotthaus, C.S.B. Grimmond: Energy exchange in a dense urban environment – Part II: Impact of spatial heterogeneity of the surface, Urban Clim. 10(P2), 281–307 (2014)

    Article  Google Scholar 

  • J.-P. Gastellu-Etchegorry, T. Yin, N. Lauret, T. Cajgfinger, T. Gregoire, E. Grau, J.-B. Feret, M. Lopes, J. Guilleux, G. Dedieu, Z. Malenovský, B.D. Cook, D. Morton, J. Rubio, S. Durrieu, G. Cazanave, E. Martin, T. Ristorcelli: Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes, Remote Sens 7(2), 1667–1701 (2015)

    Article  Google Scholar 

  • E.S. Krayenhoff, J.A. Voogt: A microscale three-dimensional urban energy balance model for studying surface temperatures, Boundary-Layer Meteorol. 123(3), 433–461 (2007)

    Article  Google Scholar 

  • A. Soux, J.A. Voogt, T.R. Oke: A model to calculate what a remote sensor ‘sees’ of an urban surface, Boundary-Layer Meteorol. 111(1), 109–132 (2004)

    Article  Google Scholar 

  • R. Kormann, F.X. Meixner: An analytical footprint model for non-neutral stratification, Boundary-Layer Meteorol. 99(2), 207–224 (2001)

    Article  Google Scholar 

  • M.Y. Leclerc, T. Foken: Footprints in Micrometeorology and Ecology (Springer, Berlin, Heidelberg 2014)

    Book  Google Scholar 

  • C.I. Hsieh, G. Katul, T.W. Chi: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows, Adv. Water Resour. 23(7), 765–772 (2000)

    Article  Google Scholar 

  • C.-I. Hsieh, G.G. Katul, J. Schieldge, J.T. Sigmon, K.K. Knoerr: The Lagrangian stochastic model for fetch and latent heat flux estimation above uniform and nonuniform terrain, Water Resour. Res. 33(3), 427–438 (1997)

    Article  Google Scholar 

  • N. Kljun, P. Calanca, M.W. Rotach, H.P. Schmid: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev. 8, 3695–3713 (2015)

    Article  Google Scholar 

  • H.P. Schmid: Footprint modeling for vegetation atmosphere exchange studies: A review and perspective, Agric. For. Meteorol. 113(1–4), 159–183 (2002)

    Article  Google Scholar 

  • B. Offerle, C.S.B. Grimmond, K. Fortuniak: Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre, Int. J. Climatol. 25(10), 1405–1419 (2005)

    Article  Google Scholar 

  • B. Offerle, C.S.B. Grimmond, K. Fortuniak: Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre, Int. J. Climatol. 25(10), 1405–1419 (2005)

    Article  Google Scholar 

  • G. Pigeon, D. Legain, P. Durand, V. Masson: Anthropogenic heat release in an old European agglomeration (Toulouse, France), Int. J. Climatol. 27(14), 1969–1981 (2007)

    Article  Google Scholar 

  • R. Moriwaki, M. Kanda, H. Senoo, A. Hagishima, T. Kinouchi: Anthropogenic water vapor emissions in Tokyo, Water Resour. Res. 44(11), W11424 (2008)

    Article  Google Scholar 

  • M. Iamarino, S. Beevers, C.S.B. Grimmond: High-resolution (space, time) anthropogenic heat emissions: London 1970–2025, Int. J. Climatol. 32(11), 1754–1767 (2012)

    Article  Google Scholar 

  • M. Rigby, R. Toumi, R. Fisher, D. Lowry, E.G. Nisbet: First continuous measurements of CO2 mixing ratio in central London using a compact diffusion probe, Atmos. Environ. 42(39), 8943–8953 (2008)

    Article  Google Scholar 

  • N. Sparks, R. Toumi: Remote sampling of a CO2 point source in an urban setting, Atmos. Environ. 44(39), 5287–5294 (2010)

    Article  Google Scholar 

  • B.W. Lafranchi, A.H. Goldstein, R.C. Cohen: Observations of the temperature dependent response of ozone to NOx reductions in the Sacramento, CA urban plume, Atmos. Chem. Phys. 11(14), 6945–6960 (2011)

    Article  Google Scholar 

  • D. Ionov, A. Poberovskii: Observations of urban NOx plume dispersion using mobile and satellite DOAS measurements around the megacity of St. Petersburg (Russia), Int. J. Remote Sens. 40(2), 719–733 (2019)

    Article  Google Scholar 

  • J.F. Barlow, T.M. Dunbar, E.G. Nemitz, C.R. Wood, M.W. Gallagher, F. Davies, E. O’Connor, R.M. Harrison: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II, Atmos. Chem. Phys. 11(5), 2111–2125 (2011)

    Article  Google Scholar 

  • S. Kotthaus, C.H. Halios, J.F. Barlow, C.S.B. Grimmond: Volume for pollution dispersion: London’s atmospheric boundary layer during ClearfLo observed with two ground-based lidar types, Atmos. Environ. 190, 401–414 (2018)

    Article  Google Scholar 

  • A.J. Illingworth, D. Cimini, A. Haefele, M. Haeffelin, M. Hervo, S. Kotthaus, U. Löhnert, P. Martinet, I. Mattis, E.J. O’Connor, R. Potthast: How can existing ground-based profiling instruments improve European weather forecasts?, Bull. Am. Meteorol. Soc. 100(4), 605–619 (2019)

    Article  Google Scholar 

  • D. van der Kamp, I. McKendry: Diurnal and seasonal trends in convective mixed-layer heights estimated from two years of continuous ceilometer observations in Vancouver, BC, Boundary-Layer Meteorol. 137(3), 459–475 (2010)

    Article  Google Scholar 

  • C. Münkel: Mixing height determination with lidar ceilometers – Results from Helsinki testbed, Meteorol. Z. 16(4), 451–459 (2007)

    Article  Google Scholar 

  • K. Schäfer, P. Wagner, S. Emeis, C. Jahn, C. Muenkel, P. Suppan: Mixing layer height and air pollution levels in urban area, Proc. SPIE 8534, 853409 (2012)

    Article  Google Scholar 

  • N. Eresmaa, J. Härkönen, S.M. Joffre, D.M. Schultz, A. Karppinen, J. Kukkonen: A three-step method for estimating the mixing height using ceilometer data from the Helsinki testbed, J. Appl. Meteorol. Climatol. 51(12), 2172–2187 (2012)

    Article  Google Scholar 

  • D.G. Steyn, M. Baldi, R.M. Hoff: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles, J. Atmos. Ocean. Technol. 16(7), 953–959 (1999)

    Article  Google Scholar 

  • S. Kotthaus, C.S.B. Grimmond: Atmospheric boundary-layer characteristics from ceilometer measurements. Part 2: Application to London’s urban boundary layer, Q. J. R. Meteorol. Soc. 144(714), 1511–1524 (2018)

    Article  Google Scholar 

  • Y. Morille, M. Haeffelin, P. Drobinski, J. Pelon: STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data, J. Atmos. Ocean. Technol. 24(5), 761–775 (2007)

    Article  Google Scholar 

  • M. Haeffelin, F. Angelini, Y. Morille, G. Martucci, S. Frey, G.P. Gobbi, S. Lolli, C.D. O’Dowd, L. Sauvage, I. Xueref-Rémy, B. Wastine, D.G. Feist: Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe, Boundary-Layer Meteorol. 143(1), 49–75 (2012)

    Article  Google Scholar 

  • Y. Poltera, G. Martucci, M. Collaud Coen, M. Hervo, L. Emmenegger, S. Henne, D. Brunner, A. Haefeler: PathfinderTURB: An automatic boundary layer algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch, Atmos. Chem. Phys. 17(16), 10051–10070 (2017)

    Article  Google Scholar 

  • A. Geiß, M. Wiegner, B. Bonn, K. Schäfer, R. Forkel, E. von Schneidemesser, C. Münkel, K.L. Chan, R. Nothard: Mixing layer height as an indicator for urban air quality?, Atmos. Meas. Tech. 10(8), 2969–2988 (2017)

    Article  Google Scholar 

  • J. Peng, C.S.B. Grimmond, X. Fu, Y. Chang, G. Zhang, J. Guo, C. Tang, J. Gao, X. Xu, J. Tan: Ceilometer-based analysis of Shanghai’s boundary layer height (under rain- and fog-free conditions), J. Atmos. Ocean. Technol. 34(4), 749–764 (2017)

    Article  Google Scholar 

  • S. Kotthaus, C.S.B. Grimmond: Atmospheric boundary-layer characteristics from ceilometer measurements. Part 1: A new method to track mixed layer height and classify clouds, Q. J. R. Meteorol. Soc. 144(714), 1525–1538 (2018)

    Article  Google Scholar 

  • M. Wiegner, I. Mattis, M. Pattantyús-Ábrahám, J.A. Bravo-Aranda, Y. Poltera, A. Haefele, M. Hervo, U. Görsdorf, R. Leinweber, J. Gasteiger, M. Haeffelin, F. Wagner, J. Cermak, K. Komínková, M. Brettle, C. Münkel, K. Pönitz: Aerosol backscatter profiles from ceilometers: validation of water vapor correction in the framework of CeiLinEx2015, Atmos. Meas. Tech. 12(1), 471–490 (2019)

    Article  Google Scholar 

  • C. Münkel, N. Eresmaa, J. Räsänen, A. Karppinen: Retrieval of mixing height and dust concentration with lidar ceilometer, Boundary-Layer Meteorol. 124(1), 117–128 (2007)

    Article  Google Scholar 

  • J.F. Barlow, C.H. Halios, S.E. Lane, C.R. Wood: Observations of urban boundary layer structure during a strong urban heat island event, Environ. Fluid Mech. 15(2), 373–398 (2015)

    Article  Google Scholar 

  • X. Liang, S. Miao, J. Li, R. Bornstein, X. Zhang, Y. Gao, F. Chen, X. Cao, Z. Cheng, C. Clements, W. Dabberdt, A. Ding, D. Ding, J.J. Dou, J.X. Dou, Y. Dou, C.S.B. Grimmond, J.E. González-Cruz, J. He, M. Huang, X. Huang, S. Ju, Q. Li, D. Niyogi, J. Quan, J. Sun, J.Z. Sun, M. Yu, J. Zhang, Y. Zhang, X. Zhao, Z. Zheng, M. Zhou: SURF: Understanding and predicting urban convection and haze, Bull. Am. Meteorol. Soc. 99(7), 1391–1413 (2018)

    Article  Google Scholar 

  • M. Huang, Z. Gao, S. Miao, F. Chen, M.A. LeMone, J. Li, F. Hu, L. Wang: Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015, Boundary-Layer Meteorol. 162(3), 503–522 (2017)

    Article  Google Scholar 

  • R.F. Banks, J. Tiana-Alsina, F. Rocadenbosch, J.M. Baldasano: Performance evaluation of the boundary-layer height from lidar and the weather research and forecasting model at an urban coastal site in the north-east Iberian peninsula, Boundary-Layer Meteorol. 157, 265–292 (2015)

    Article  Google Scholar 

  • C.J. Senff, M. Trainer, W.M. Angevine, M.A. Ayoub, A.B. White, R.M. Banta: Urban-rural contrasts in mixing height and cloudiness over Nashville in 1999, J. Geophys. Res. Atmos. 108(D3), 4092 (2003)

    Google Scholar 

  • R.M. Banta: Mixing-height differences between land use types: Dependence on wind speed, J. Geophys. Res. 108(D10), 4321 (2003)

    Article  Google Scholar 

  • F. Davies, D.R. Middleton, K.E. Bozier: Urban air pollution modelling and measurements of boundary layer height, Atmos. Environ. 41(19), 4040–4049 (2007)

    Article  Google Scholar 

  • S. Pal, I. Xueref-Remy, L. Ammoura, P. Chazette, F. Gibert, P. Royer, E. Dieudonné, J.-C. Dupont, M. Haeffelin, C. Lac, M. Lopez, Y. Morille, F. Ravetta: Spatio-temporal variability of the atmospheric boundary layer depth over the Paris agglomeration: An assessment of the impact of the urban heat island intensity, Atmos. Environ. 63, 261–275 (2012)

    Article  Google Scholar 

  • D.R. Drew, J.F. Barlow, S.E. Lane: Observations of wind speed profiles over Greater London, UK, using a Doppler lidar, J. Wind Eng. Ind. Aerodyn. 121, 98–105 (2013)

    Article  Google Scholar 

  • World Meteorological Organization: Guide to Meteorological Instruments and Methods of Observation, Vol. 8 (WMO, Geneva 2017)

    Google Scholar 

  • World Meteorological Organization: Urban observations. In: Guide to Meteorological Instruments and Methods of Observation, Vol. 8 (WMO, Geneva 2017), Chapter 9

    Google Scholar 

  • B. Crawford, C.S.B. Grimmond, A. Christen: Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area, Atmos. Environ. 45(4), 896–905 (2011)

    Article  Google Scholar 

  • K. Fortuniak, W. Pawlak, M. Siedlecki: Integral turbulence statistics over a Central European city centre, Boundary-Layer Meteorol. 146(2), 257–276 (2013)

    Article  Google Scholar 

  • H.C. Ward, J.G. Evans, C.S.B. Grimmond: Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK, Atmos. Chem. Phys. 13(9), 4645–4666 (2013)

    Article  Google Scholar 

  • H.C. Ward, S. Kotthaus, C.S.B. Grimmond, A. Bjorkegren, M. Wilkinson, W.T.J. Morrison, J.G. Evans, J.I.L. Morison, M. Iamarino: Effects of urban density on carbon dioxide exchanges: Observations of dense urban, suburban and woodland areas of southern England, Environ. Pollut. 198, 186–200 (2015)

    Article  Google Scholar 

  • A.M. Coutts, E. Daly, J. Beringer, N.J. Tapper: Assessing practical measures to reduce urban heat: Green and cool roofs, Build. Environ. 70, 266–276 (2013)

    Article  Google Scholar 

  • A.B. Bjorkegren, C.S.B. Grimmond, S. Kotthaus, B.D. Malamud: CO2 emission estimation in the urban environment: Measurement of the CO2 storage term, Atmos. Environ. 122, 775–790 (2015)

    Article  Google Scholar 

  • T. Song, Y. Wang: Carbon dioxide fluxes from an urban area in Beijing, Atmos. Res. 106, 139–149 (2012)

    Article  Google Scholar 

  • A.J. Oliphant, S. Stein, G. Bradford: Micrometeorology of an ephemeral desert city, the Burning Man experiment, Urban Clim. 23, 53–70 (2018)

    Article  Google Scholar 

  • World Meteorological Organization: Guide for Urban Integrated Hydro-Meteorological, Climate and Environmental Services Part 1a: Concept and Methodology (WMO, Geneva 2018)

    Google Scholar 

  • A.M. Vicedo-Cabrera, B. Forsberg, A. Tobias, A. Zanobetti, J. Schwartz, B. Armstrong, A. Gasparrini: Associations of inter- and intraday temperature change with mortality, Am. J. Epidemiol. 183(4), 286–293 (2016)

    Article  Google Scholar 

  • A. Matzarakis, D. Fröhlich, M. Gangwisch, C. Ketterer, A. Peer: Developments and applications of thermal indices in urban structures by RayMan and SkyHelios model. In: 9th Int. Conf. Urban Clim. (2015)

    Google Scholar 

  • K.E. Taylor, R.J. Stouffer, G.A. Meehl: An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc. 93(4), 485–498 (2012)

    Article  Google Scholar 

  • P.G. Dixon, D.M. Brommer, B.C. Hedquist, A.J. Kalkstein, G.B. Goodrich, J.C. Walter, C.C. Dickerson IV, S.J. Penny, R.S. Cerveny: Heat mortality versus cold mortality: A study of conflicting databases in the United States, Bull. Am. Meteorol. Soc. 86(7), 937–943 (2005)

    Article  Google Scholar 

  • J. Shaman, V.E. Pitzer, C. Viboud, B.T. Grenfell, M. Lipsitch: Absolute humidity and the seasonal onset of influenza in the continental United States, PLoS Biol. 8(2), e1000316 (2010)

    Article  Google Scholar 

  • J. Shaman, M. Kohn: Absolute humidity modulates influenza survival, transmission, and seasonality, Proc. Natl. Acad. Sci. U.S.A. 106(9), 3243–3248 (2009)

    Article  Google Scholar 

  • World Health Organization: Exposure to ambient air pollution 2018). https://www.who.int/gho/phe/outdoor_air_pollution/exposure/en/, Accessed 21 July 2021

    Google Scholar 

  • Statista: China: Car production 2018 2018). https://www.statista.com/statistics/281133/car-production-in-china/, Accessed 21 July 2021

    Google Scholar 

  • United Kingdom Department of Transport: Walking and Cycling Statistics, England: 2017 (DfT, London 2018)

    Google Scholar 

  • A. Lewis, P. Edwards: Validate personal air-pollution sensors, Nature 535(7610), 29–31 (2016)

    Article  Google Scholar 

  • A.C. Lewis, J. Lee, P.M. Edwards, M.D. Shaw, M.J. Evans, S.J. Moller, K. Smith, M. Ellis, J.W. Buckley, S. Gillott, A. White: Evaluating the performance of low cost chemical sensors for air pollution research, Faraday Discuss. 189, 85–103 (2016)

    Article  Google Scholar 

  • K.R. Smith, P.M. Edwards, M.J. Evans, J.D. Lee, M.D. Shaw, F. Squires, S. Wilde, A.C. Lewis: Clustering approaches to improve the performance of low cost air pollution sensors, Faraday Discuss. 200, 621–637 (2017)

    Article  Google Scholar 

  • J.D. Allan, P.I. Williams, W.T. Morgan, C.L. Martin, M.J. Flynn, J. Lee, E. Nemitz, G.J. Phillips, M.W. Gallagher, H. Coe: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities, Atmos. Chem. Phys. 10(2), 647–668 (2010)

    Article  Google Scholar 

  • A. Geisinger, A. Behrendt, V. Wulfmeyer, J. Strohbach, J. Förstner, R. Potthast: Development and application of a backscatter lidar forward operator for quantitative validation of aerosol dispersion models and future data assimilation, Atmos. Meas. Tech. 10(12), 4705–4726 (2017)

    Article  Google Scholar 

  • E. Warren, C. Charlton-Perez, S. Kotthaus, H. Lean, S. Ballard, E. Hopkin, S. Grimmond: Evaluation of forward-modelled attenuated backscatter using an urban ceilometer network in London under clear-sky conditions, Atmos. Environ. 191, 532–547 (2018)

    Article  Google Scholar 

  • M.R. Alfarra, A.S.H. Prevot, S. Szidat, J. Sandradewi, S. Weimer, V.A. Lanz, D. Schreiber, M. Mohr, U. Baltensperger: Identification of the mass spectral signature of organic aerosols from wood burning emissions, Environ. Sci. Technol. 41(16), 5770–5777 (2007)

    Article  Google Scholar 

  • S. Naz, A. Page, K.E. Agho: Household air pollution from use of cooking fuel and under-five mortality: The role of breastfeeding status and kitchen location in Pakistan, PLoS One 12(3), e0173256 (2017)

    Article  Google Scholar 

  • CIBSE: Weather data 2016 2016). https://www.cibse.org/weatherdata, Accessed 21 July 2021

    Google Scholar 

  • ASHRAE: ASHRAE climate data center 2019). https://www.ashrae.org/technical-resources/bookstore/ashrae-climate-data-center, Accessed 21 July 2021

    Google Scholar 

  • BREEAM: The world’s leading sustainability assessment method for masterplanning projects, infrastructure and buildings 2019). https://www.breeam.com/, Accessed 21 July 2021

    Google Scholar 

  • USGBC: LEED 2019). https://new.usgbc.org/leed, Accessed 21 July 2021

    Google Scholar 

  • C.A. Short, K.J. Lomas, A. Woods: Design strategy for low-energy ventilation and cooling within an urban heat island, Build. Res. Inf. 32(3), 187–206 (2004)

    Article  Google Scholar 

  • Construction Manager: Roofing: A walkie-talkie on the wildside 2015). http://www.constructionmanagermagazine.com/onsite/6roofing-w4alkie-talk6ie-wildside/, Accessed 21 July 2021

    Google Scholar 

  • C. Thoua, J. Hines: Post-occupancy evaluation of five schools by Architype 2016). https://www.architectsjournal.co.uk/buildings/post-occupancy-evaluation-of-five-schools-by-architype/10004526.article, Accessed 21 July 2021

    Google Scholar 

  • BBC News: Leeds’ Bridgewater Place owners to foot £900,000 wind bill 2016). https://www.bbc.co.uk/news/uk-england-leeds-38174624, Accessed 21 July 2021

    Google Scholar 

  • C.R. Thorne, E.C. Lawson, C. Ozawa, S.L. Hamlin, L.A. Smith: Overcoming uncertainty and barriers to adoption of Blue-Green Infrastructure for urban flood risk management, J. Flood Risk Manag. 11, S960–S972 (2018)

    Article  Google Scholar 

  • T. Sun, C.S.B. Grimmond, G.-H. Ni: How do green roofs mitigate urban thermal stress under heat waves?, J. Geophys. Res. 121(10), 5320–5335 (2016)

    Article  Google Scholar 

  • S. Barr: Hosepipe ban: Where in UK is it being imposed and what will happen if you break it? 2018). https://www.independent.co.uk/life-style/hosepipe-ban-2018-north-west-uk-explained-united-utilities-water-shortage-rules-a8450621.html, Accessed 21 July 2021

    Google Scholar 

  • B. Cooper, M. Burton, L. Crase: Urban water restrictions: Attitudes and avoidance, Water Resour. Res. 47(12), W12527 (2011)

    Article  Google Scholar 

  • S. Guhathakurta, P. Gober: The impact of the Phoenix urban heat island on residential water use, J. Am. Plan. Assoc. 73(3), 317–329 (2007)

    Article  Google Scholar 

  • S. Pulkkinen, V. Chandrasekar, A.M. Harri: Nowcasting of precipitation in the high-resolution Dallas-Fort Worth (DFW) urban radar remote sensing network, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(8), 2773–2787 (2018)

    Article  Google Scholar 

  • S. Thorndahl, T. Einfalt, P. Willems, J.E. Nielsen, M.-C. ten Veldhuis, K. Arnbjerg-Nielsen, M.R. Rasmussen, P. Molnar: Weather radar rainfall data in urban hydrology, Hydrol. Earth Syst. Sci. 21, 1359–1380 (2017)

    Article  Google Scholar 

  • H. Lean, J. Barlow, C.H. Halios: The impact of spin up and resolution on the representation of a clear convective boundary layer over London in order 100 m grid-length versions of the Met Office Unified Mode, Q. J. R. Meteorol. Soc. 145, 1674–1689 (2019)

    Article  Google Scholar 

  • C.R. Wood, L. Pauscher, H.C. Ward, S. Kotthaus, J.F. Barlow, M. Gouvea, S.E. Lane, C.S.B. Grimmond: Wind observations above an urban river using a new lidar technique, scintillometry and anemometry, Sci. Total Environ. 442, 527–533 (2013)

    Article  Google Scholar 

  • J.F. Barlow, M. Dunbar, E.G. Nemitz, C.R. Wood, M.W. Gallagher, F. Davies, E. O’Connor, R.M. Harrison: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II, Atmos. Chem. Phys. 11, 2111–2125 (2011)

    Article  Google Scholar 

  • C.R. Wood, A. Lacser, J.F. Barlow, A. Padhra, S.E. Belcher, E. Nemitz, C. Helfter, D. Famulari, C.S.B. Grimmond: Turbulent flow at 190 m height above London during 2006–2008: A climatology and the applicability of similarity theory, Boundary-Layer Meteorol. 137(1), 77–96 (2010)

    Article  Google Scholar 

  • R. Calhoun, R. Heap, M. Princevac, R. Newsom, H. Fernando, D. Ligon: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment, J. Appl. Meteorol. Climatol. 45(8), 1116–1126 (2006)

    Article  Google Scholar 

  • J. Barlow, M. Best, S.I. Bohnenstengel, P. Clark, S. Grimmond, H. Lean, A. Christen, S. Emeis, M. Haeffelin, I.N. Harman, A. Lemonsu, A. Martilli, E. Pardyjak, M.W. Rotach, S. Ballard, I. Boutle, A. Brown, X. Cai, M. Carpentieri, O. Coceal, B. Crawford, S. Di Sabatino, J. Dou, D.R. Drew, J.M. Edwards, J. Fallmann, K. Fortuniak, J. Gornall, T. Gronemeier, C.H. Halios, D. Hertwig, K. Hirano, A.A.M. Holtslag, Z. Luo, G. Mills, M. Nakayoshi, K. Pain, K.H. Schlünzen, S. Smith, L. Soulhac, G. Steeneveld, T. Sun, N.E. Theeuwes, D. Thomson, J.A. Voogt, H.C. Ward, Z. Xie, J. Zhong: Developing a research strategy to better understand, observe, and simulate urban atmospheric processes at kilometer to subkilometer scales, Bull. Am. Meteorol. Soc. 98(10), ES261–ES264 (2017)

    Article  Google Scholar 

  • A.J. Arnfield: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island, Int. J. Climatol. 23(1), 1–26 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Grimmond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Grimmond, S., Ward, H.C. (2021). Urban Measurements and Their Interpretation. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_52

Download citation

Publish with us

Policies and ethics