Skip to main content

Synthetic Biology and the Possibilities in Achieving a Plant Demand and Soil Buffer Capacity Adapted Nitrogen (N) Recycling

  • Chapter
  • First Online:
Book cover Soil and Recycling Management in the Anthropocene Era

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 214 Accesses

Abstract

The world demand for nitrogen (N) fertilizer increases since Haber and Bosch’s invention of technical nitrogen fixation (TNF) with an average growth of 1.9% per annum or an amount of 117.116 tons N in 2019 (FAO in World Fertilizer Trends and Outlook to 2020, 2017, [34]). Landscapes not only receive TNF, but also the wastes from industrial livestock farming, an increasing industrialisation, a growing population and from overloading wastewater treatment plants by the production of sewage sludge. Thus, the administration is forced to handle and for instance the German capital Berlin hired 14.364 ha land in 1913 and installed a sewage farm for spreading Berlin’s wastewater. In 1926, the amount of heavy-metal polluted wastewater produced by Berlin’s industry was 7.3%. In 1988, still 34% of all accruing wastewater was spread on the fields [61]. From Berlin’s nutrient over satiated sewage farm soil, alarming amounts of nitrate flew into nearby glacial valley wells, surface waters and riverbank filtrates, which are used as drinking water sources and thus, in 1988 the wastewater spreading on the sewage farm stopped. Synthetic biology is a promising approach to reduce soil N buffer capacity over satiating concentrations. The possibilities of synthetic biology techniques in the focus of this chapter are discussed towards curing N recycling related impacts on health, soil management and wasterwater treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acevedo-Rocha, C.G.: The synthetic nature of biology. In: Hagen, K., Engelhard, M., Toepfer, G. (eds.) Ambivalences of Creating Life. Ethics of Science and Technology Assessment. Schriftenreihe der EA European Academy of Technology and Innovation Assessment GmbH, vol. 45, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21088-9_2

  2. Aelterman, P., Rabaey, K., Pham, H.T., Boon, N., Verstraete, W.: Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40, 3388–3394 (2006). https://doi.org/10.1021/es0525511

  3. Allocati, N., Masulli, M., Alexeyev, M.F., Di Ilio, C.: Escherichia coli in Europe: an overview. IJERPH 10, 6235–6254 (2013). https://doi.org/10.3390/ijerph10126235

  4. Amann, R.I., Ludwig, W., Schleifer, K.H.: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995)

    Google Scholar 

  5. Ambus, P., Zechmeister-Boltenstern, S.: Denitrification and N-cycling in forest ecosystems. In: Bothe, H., Ferguson, S.J., Newton, W.E. (eds.) Biology of the Nitrogen Cycle, pp. 343–358. Elsevier (2007)

    Google Scholar 

  6. Arbuckle, T.E., Sherman, G.J., Corey, P.N., Walters, D., Lo, B.: Water nitrates and CNS birth defects: a population-based case-control study. Arch. Environ. Health 43, 162–167 (1988). https://doi.org/10.1080/00039896.1988.9935846

  7. Ashok, V., Hait, S.: Remediation of nitrate-contaminated water by solid-phase denitrification process—a review. Int. Environ. Sci. Pollut. Res. 22, 8075–8093 (2015). https://doi.org/10.1007/s11356-015-4334-9

  8. Baeshen, N.A., Baeshen, M.N., Sheikh, A., Bora, R.S., Ahmed, M.M.M., Ramadan, H.A.I., Kulvinder Singh Saini, K.S., Redwan, E.M.: Cell factories for insulin production. Microb. Cell Fact. 13, S. 141 (2014). https://doi.org/10.1186/s12934-014-0141-0

  9. Bakken, L.R., Bergaust, L., Liu, B., Frostegård, A.: Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1226–1234 (2012). https://doi.org/10.1098/rstb.2011.0321

  10. Balmer, Andrew S., Bulpin, Kate, J.: Left to their own devices: Post-ELSI, ethical equipment and the international genetically engineered machine (iGEM) competition. BioSocieties 8(3),311–335 (2013)

    Google Scholar 

  11. Baumann, B., Snozzi, M., Zehnder, A.J., van der Meer, J.R.: Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J. Bacteriol. 178, 4367–4374 (1996). https://doi.org/10.1128/jb.178.15.4367-4374.1996

  12. Benckiser, G.: Plastics, micro- and nanomaterials, and virus-soil microbe-plant interactions in the environment. In: Prasad, R. (ed.) Plant Nanobionics, Nanotechnology in the Life Sciences. Springer Nature, Switzerland (2019). https://doi.org/10.1007/978-3-030-12496-04

  13. Benckiser, G., Haider, K., Sauerbeck, D.: Field measurements of gaseous nitrogen losses from an Alfisol planted with sugar beets. Z. Pflanzenernaehr. Bodenkd. 149, 249–161 (1986)

    Google Scholar 

  14. Benckiser, G., Ladha, J.K., Wiesler, F.: Climate change and nitrogen turnover in soils and aquatic environments. In: Marxsen, J. (ed.) Climate Change and Microbial Ecology: Current Research and Future Trends, pp. 113–136. Caister Academic Press, UK (2016). https://doi.org/10.21775/9781910190319.08

  15. Benckiser, G., Eilts, R., Linn, A., Lorch, H.-J., Sümer, E., Weiske, A., Wenzhofer, F.: N2O emissions from different cropping systems and from aerated, nitrifying and denitrifying tanks of a municipal waste water treatment plant. Biol. Fertil. Soils. 23(3), S. 257–265 (1996). https://doi.org/10.1007/BF00335953

  16. Berla, B.M., Saha, R., Immethun, C.M., Maranas, C.D., Moon, T.S., Pakrasi, H.B.: Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. (2013). https://doi.org/10.3389/fmicb.2013.00246

  17. Bothe, H., Jost, G., Schloter, M., Ward, B.B., Witzel, K.: Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24, 673–690 (2000). https://doi.org/10.1111/j.1574-6976.2000.tb00566.x

  18. Braker, G., Zhou, J., Wu, L., Devol, A.H., Tiedje, J.M.: Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities. Appl. Environ. Microbiol. 66, 2096–2104 (2000). https://doi.org/10.1128/aem.66.5.2096-2104.2000

  19. Brender, J.D., Weyer, P.J., Romitti, P.A., Mohanty, B.P., Shinde, M.U., Vuong, A.M., Sharkey, J.R., Dwivedi, D., Horel, S.A., Kantamneni, J., Huber, J.C., Jr., Zheng, Q., Werler, M.M., Kelley, K.E., Griesenbeck, J.S., Zhan, F.B., Langlois, P.H., Suarez, L., Canfield, M.A.: Prenatal nitrate intake from drinking water and selected birth defects in offspring of participants in the national birth defects prevention study. Environ. Health Perspect. 121, 1083–1089 (2013). https://doi.org/10.1289/ehp.1206249

  20. Calero, P., Nikel, P.I.: Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb. Biotechnol. 12, 98–124 (2019). https://doi.org/10.1111/1751-7915.13292

  21. Carlson, C.A., Ingraham, J.L.: Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl. Environ. Microbiol. 45, 1247–1253 (1983)

    Google Scholar 

  22. Casella, S., Payne, W.J.: Potential of denitrifiers for soil environment protection. FEMS Microbiol. Lett. 140, 1–8 (1996). https://doi.org/10.1111/j.1574-6968.1996.tb08306.x

  23. Chen, J.G., Crooks, R.M., Seefeldt, L.C., Bren, K.L., Bullock, R.M., Darensbourg, Y., Holland, P.L., Hoffman, B., Janik, M.J., Jones, A.K., Kanatzidis, M.G., King, P., Lancaster, M., Lymar, S.V., Pfromm, P., Schneider, W.F., Schrock, R.R.: Beyond fossil fuel–driven nitrogen transformations. Science 360, 6391 (2018). https://doi.org/10.1126/science.aar6611

  24. Chi, H., Xiaoli, W., Yue, S., Ying, Q., Zixin, D., Lianrong, W., Shi, C.: Engineering and modification of microbial chassis for systems and synthetic biology. Synth. Syst. Biotechnol. 4, 25–33 (2019). https://doi.org/10.1016/j.synbio.2018.12.001

  25. Cíntia, B.L., Fávaro-Polonio, Z., Pamphile, J.A., Polonio, J.C.: Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3(2), 275–290 (2019). https://doi.org/10.1016/j.biori.2019.09.001

  26. Coyle, M., Hu, J., Gartner, Z.: Mysteries in a minimal genome. ACS Sci. 2, 274–277 (2016). https://doi.org/10.1021/acscentsci.6b00110

  27. Croen, L.A., Todoroff, K., Shaw, G.M.: Maternal exposure to nitrate from drinking water and diet and risk for neural tube defects. Am. J. Epidemiol. 153, 325–331 (2001). https://doi.org/10.1093/aje/153.4.325

  28. Crow, D.: 6 Amazing things to watch in synthetic biology (2017). Online verfügbar unter https://medium.com/neodotlife/6-things-to-watch-in-synthetic-biology-f76666c7114e

  29. Davies, J.A.: Real-world synthetic biology: is it founded on an engineering approach, and should it be? Life 9, 6 (2019). https://doi.org/10.3390/life9010006

  30. Demanèche, S., Philippot, L., David, M.M., Navarro, E., Vogel, T.M., Simonet, P.: Characterization of denitrification gene clusters of soil bacteria via a metagenomic approach. Appl. Environ. Microbiol. 75, 534–537 (2009). https://doi.org/10.1128/AEM.01706-08

  31. Di Capua, F., Pirozzi, F., Lens, P.N.L., Esposito, G.: Electron donors for autotrophic denitrification. Chem. Eng. J. 362, 922–937 (2019). https://doi.org/10.1016/j.cej.2019.01.069

  32. El Karoui, M., Hoyos-Flight, M., Fletcher, L.: Future trends in synthetic biology—a report. Front. Bioeng. Biotechnol. (2019). https://doi.org/10.3389/fbioe.2019.00175

  33. Erb, T.J.: Neue biosynthetische Ansätze zur Kraft- und Wertstoffgewinnung. Nova Acta Leopold. NF Nr. 424, 121–135 (2019)

    Google Scholar 

  34. FAO: World Fertilizer Trends and Outlook to 2020 (2017). www.fao.org

  35. Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P.D., Rice, S.C., Kjelleberg, S.: Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14(563–600), 75 (2016). https://doi.org/10.1038/nrmicro.2016.94

  36. Franklin, R.B., Morrissey, E.M., Morina, J.C.: Changes in abundance and community structure of nitrate-reducing bacteria along a salinity gradient in tidal wetlands. Pedobiologia 60, 21–26 (2017). https://doi.org/10.1016/j.pedobi.2016.12.002

  37. Friedrich, B.: Biomasse als erneuerbarer Energieträger. Nova Acta Leopold. NF Nr. 424, 105–120 (2019)

    Google Scholar 

  38. Girvan, H.M., Munro, A.W.: Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. Curr. Opin. Chem. Biol. 31, 136–145 (2016). https://doi.org/10.1016/j.cbpa.2016.02.018

  39. Goold, H.D., Wright, P., Hailstones, D.: Emerging opportunities for synthetic biology in agriculture. Genes 9, 341 (2018). https://doi.org/10.3390/genes9070341

  40. Greer, F.R., Shannon, M.: Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics 116, 784–786 (2005). https://doi.org/10.1542/peds.2005-1497

  41. Guidelines for Drinking-Water Quality, 4th edn.: World Health Organization, Geneva (2017)

    Google Scholar 

  42. Gupta, A. B.: Thiosphaera pantotropha: a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification. Enzyme Micro. Technol. 21(8), S. 589–595 (1997). https://doi.org/10.1016/S0141-0229(97)00070-7

  43. Gupta, S.K., Gupta, C., Gupta, A.B., Seth, A.K., Bassin, J.K., Gupta, A.: Recurrent acute respiratory tract infections in areas with high nitrate concentrations in drinking water. Environ. Health Perspect. 108, 363–366 (2000). https://doi.org/10.1289/ehp.00108363

  44. Hahn, J., Katja Becker, K.: Dimensionen der antimikrobiellen Resistenz. Nova Acta Leopold. NF Nr. 424, 147–165 (2019)

    Google Scholar 

  45. Halling-Sorensen, B., Jorgensen, S.E.: The removal of nitrogen from wastewater. In: Studies in Environmental Science, vol. 54, 1st edn., pp. 43–53. Elsevier (1993). https://doi.org/10.1016/S0166-1116(08)70524-7

  46. Härtig, E., Schiek, U., Vollack, K.U., Zumft, W.G.: Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J. Bacteriol. 181, 3658–3665 (1999)

    Google Scholar 

  47. Holmes, D.E., Dang, Y., Smith, J.A.: Nitrogen cycling during wastewater treatment. Adv. Appl. Microbiol. 106, 113–192 (2019). https://doi.org/10.1016/bs.aambs.2018.10.003

  48. Hossain, M.I., Paparini, A., Cord-Ruwisch, R.: Rapid adaptation of activated sludge bacteria into a glycogen accumulating biofilm enabling anaerobic BOD uptake. Bioresour. Technol. 228, 1–8 (2017). https://doi.org/10.1016/j.biortech.2016.11.102

  49. Hsu, T., Welner, D.H., Russ, Z.N., Cervantes, B., Prathuri, R.L., Adams, P.D., Dueber, J.E.: Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat. Chem. Biol. 14, 256–261 (2018). https://doi.org/10.1038/nchembio.2552

  50. Hutchison, Clyde, A., Chuang, R,-Y., Noskov, Vladimir, N., Assad-Garcia, N., Deerinck, Thomas. J., Ellisman, M.H.. et al.: Design and synthesis of a minimal bacterial genome. In: Science (New York, N.Y.), vol. 351 (6280), aad6253. (2016). https://doi.org/10.1126/science.aad6253

  51. Hwang, J.H., Oleszkiewicz, J.A.: Effect of cold-temperature shock on nitrification. Water Environ. Res. 79, 964–968 (2007). https://doi.org/10.2175/106143007X176022

  52. iGEM Team Virginia 2017; http://2017.igem.org/Team, Virginia (as of August 2020)

  53. iGEM Team Marburg (2018) http://2018.igem.org/Team, Marburg (as of August 2020)

  54. iGEM Foundation: iGEM Foundation. 27 Drydock Avenue, Suite 27E-230, Boston, MA 02210 (2019). https://2019.igem.org/Main_Page

  55. Jetten, M.S.M., Sliekers, O., Kuypers, M., Dalsgaard, T., van Niftrik, L., Cirpus, I., van de Pas-Schoonen, K.T., Lavik, G., Thamdrup, B., Le Paslier, D., Op den Camp, H.J.M., Hulth, S., Nielsen, L.P., Abma, W., Third, K., Engström, P., Kuenen, J.G., Jørgensen, B.B., Canfield, D., Sinninghe-Damste, J.S., Revsbech, N.P., Fuerst, J., Weissenbach, J., Wagner, M., Schmidt, I., Schmid, M., Strous, M.: Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. Appl. Microbiol. Biotechnol. 63, 107–114 (2003). https://doi.org/10.1007/s00253-003-1422-4

  56. Kartal, B., Almeida, N.M., Maalcke, W.J., Op den Camp, H.J.M., Jetten, M.S.M., Keltjens, J.T.: How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 37(3), 428–461 (2013). https://doi.org/10.1111/1574-6976.12014

  57. Katz, L., Chen, Y.Y., Gonzalez, R., Peterson, T.C., Zhao, H., Baltz, R.H.: Synthetic biology advances and applications in the biotechnology industry: a perspective. J. Ind. Microbiol. Biotechnol. 45, 449 (2018). https://doi.org/10.1007/s10295-018-2056-y

  58. Khosla, C., Bailey, J.E.: Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J. Bacteriol. 171, 5995–6004 (1989). https://doi.org/10.1128/jb.171.11.5995-6004.1989

  59. Kim, Y., Kang, J., Shen, B., Wang, Y., He, Y., Lee, M.: Open–closed switching of synthetic tubular pores. Nat. Commun. 6, 8650 (2015). https://doi.org/10.1038/ncomms9650

  60. König, H., Frank, D., Heil, R., Coenen, C.: Synthetic genomics and synthetic biology applications between hopes and concerns. Curr. Genomics 14, 11–24 (2013). https://doi.org/10.2174/1389202911314010003

  61. Landesumweltamt Brandenburg (LUA): Gefährdungsabschätzung und Sanierung von ehemaligen Rieselfeldern unter Berücksichtigung der Anforderungen von BBodSchG/BBodSchV; Fachbeiträge des Landesumweltamtes - Titelreihe, Heft - Nr. 77 - Bodenschutz und Altlastenbearbeitung 1, April 2003

    Google Scholar 

  62. Lee, H.W., Park, Y.K., Choi, E., Lee, J.W.: Bacterial community and biological nitrate removal: comparisons of autotrophic and heterotrophic reactors for denitrification with raw sewage sludge. J. Microbiol. Biotechnol. 11, 1826–1835 (2008). https://doi.org/10.4014/jmb.0800.276

  63. Li, L., Jiang, W., Lu, Y.: A modified Gibson assembly method for cloning large DNA fragments with high GC contents. Methods Mol. Biol. 1671, 203–209 (2018). https://doi.org/10.1007/978-1-4939-7295-1_13

  64. Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N., Fu, X.: Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595–600 (2018). https://doi.org/10.1038/s41586-0415-5

  65. Lim, J.Y., Kim, H.S., Park, S.Y., Kim, J.H.: Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor. Environ. Eng. Res. 25, 252–257 (2020). https://doi.org/10.4491/eer.2018.427

  66. Lovely, D.R., Walker, D.J.F.: Geobacter protein nanowires. Front. Microbiol. (2019). https://doi.org/10.3389/fmicb.2019.02078

  67. Lycus, P., Soriano-Laguna, M.J., Kjos, M., Richardson, D., Gates, A.J., Milligan, D.A., Frostegård, Å., Bergaust, L., Bakken, L.R.: A bet-hedging strategy for denitrifying bacteria curtails their release of N2O. PNAS 115, 11820–11825 (2018). https://doi.org/10.1073/pnas.1805000115

  68. McCarty, N.S., Ledesma-Amaro, R.: Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 37, 181–197 (2019). https://doi.org/10.1016/j.tibtech.2018.11.002

  69. Miao, L., Liu, Z.: Microbiome analysis and -omics studies of microbial denitrification processes in wastewater treatment: recent advances. Sci. China Life Sci. 61(7), 753–761 (2018). https://doi.org/10.1007/s11427-017-9228-2

  70. Michalsky, R., Pfromm, P.H., Steinfeld, A.: Rational design of metal nitride redox materials for solar-driven ammonia synthesis. Interface Focus 5, 20140084 (2015). https://doi.org/10.1098/rsfs.2014.0084

  71. Molecular Medical Microbiology: In: Tang, W., Sussman, M., Liu, D., Poxton, I., Schwartzman, J. (eds.). Elsevier ScienceDirect (2015). https://doi.org/10.1016/C2010-1-67744-9

  72. Mortimer, J.C.: Plant synthetic biology could drive a revolution in biofuels and medicine. Exp. Biol. Med. 244, 323–331 (2019). https://doi.org/10.1177/1535370218793890

  73. Muck, S., De Corte, D., Clifford, E.L., Bayer, B., Gerhard, J., Herndl, G.J., Sintes, E.: Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front. Microbiol. (2019). https://doi.org/10.3389/fmicb.2019.02141

  74. Mulder, A., Graaf, A.A., Robertson, L.A., Kuenen, J.G.: Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16(3), 177–184 (1995). https://doi.org/10.1111/j.1574-6941.1995.tb00281.x

  75. Nguyen, P.Q.: Synthetic biology engineering of biofilms as nanomaterials factories. Biochem. Soc. Trans. 45, 585–597 (2017). https://doi.org/10.1042/BST20160348

  76. Oshiki, M., Satoh, H., Okabe, S.: Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ. Microbiol. 18(9), 2784–2796 (2016). https://doi.org/10.1111/1462-2920.13134

  77. Peter, D.M., von Borzyskowski, L.S., Kiefer, P., Christen, P., Vorholt, J.A., Erb, T.J.: Screening and engineering the synthetic potential of carboxylating reductases from central metabolism and polyketide biosynthesis. Angew. Chem. 54, 13457–13461 (2015)

    Google Scholar 

  78. Philippot, L.: Denitrifying genes in bacterial and Archaeal genomes. Biochim. Biophys. Acta (BBA) 1577, 355–376 (2002). https://doi.org/10.1016/S0167-4781(02)00420-7

  79. Pochana, K.: Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci. Technol. 39, 61–68 (1999). https://doi.org/10.1016/S0273-1223(99)00123-7

  80. Pomeranz, A., Korzets, Z., Vanunu, D., Krystal, H., Wolach, B.: Elevated salt and nitrate levels in drinking water cause an increase of blood pressure in schoolchildren. Kidney Blood Press. Res. 23, 400–403 (2000). https://doi.org/10.1159/000025989

  81. Prosser, J.I.: Nitrogen in soils. In: Nitrification Encyclopedia of Soils in the Environment, pp. 31–39 (2005). https://doi.org/10.1016/B0-12-348530-4/00512-9

  82. Qureshi, N., Annous, B.A., Ezeji, T.C., Karcher, P., Maddox, I.S.: Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb. Cell Fact. 4, 24 (2005). https://doi.org/10.1186/1475-2859-4-24

  83. Rádiková, Z., Tajtakova, M., KoCan, A., Trnovec, T., Sebokova, E., Klimes, I., Langer, P.: Possible effects of environmental nitrates and toxic organochlorines on human thyroid in highly polluted areas in Slovakia. Thyroid 18, 353–362 (2008). https://doi.org/10.1089/thy.2007.0182

  84. Rogers, C., Oldroyd, G.E.D.: Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp. Bot. 65, 1939–1946 (2014). https://doi.org/10.1093/jxb/eru098

  85. Santos-Merino, M., Singh, A.K., Ducat, D.C.: New applications of synthetic biology tools for cyanobacterial metabolic engineering. Front. Bioeng. Biotechnol. (2019). https://doi.org/10.3389/fbioe.2019.00033

  86. Satoh, H., Nakamura, Y., Ono, H., Okabe, S.: Effect of oxygen concentration on nitrification and denitrification in single activated sludge flocs. Biotechnol. Bioeng. 83, 604–607 (2003). https://doi.org/10.1002/bit.10717

  87. Schlesinger, W.H.: On the fate of anthropogenic nitrogen. PNAS 106, 203–208 (2009). https://doi.org/10.1073/pnas.0810193105

  88. Schmidt, I., Sliekers, O., Schmid, M., Cirpus, I., Strous, M., Bock, E., et al.: Aerobic and anaerobic ammonia oxidizing bacteria-competitors or natural partners? FEMS Microbiol. Ecol. 39, 175–181 (2002). https://doi.org/10.1111/j.1574-6941.2002.tb00920.x

  89. Schullehner, J., Hansen, B., Thygesen, M., Pedersen, C.B., Sigsgaard, T.: Nitrate in drinking water and colorectal cancer risk: a nationwide population-based cohort study. Int. J. Cancer 143, 73–79 (2018). https://doi.org/10.1002/ijc.31306

  90. Schwientek, M., Einsiedl, F., Stichler, W., Stögbauer, A., Strauss, H., Maloszewski, P.: Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system. Chem. Geol. 255, 60–67 (2008). https://doi.org/10.1016/j.chemgeo.2008.06.005

  91. Shao, Y., Lu, N., Wu, Z., Cai, C., Wan, S., Zhang, L.L., Zhou, F., Xiao, S., Liu, L., Zeng, X., Zheng, H., Yang, C., Zhao, Z., Zhao, G., Zhou, J.Q., Xue, X., Qin, Z.: Creating a functional single-chromosome yeast. Nature 560, 331–335 (2018). https://doi.org/10.1038/s41586-018-0382x

  92. Sparacino-Watkins, C., Stolz, J.F., Basu, P.: Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 43, 676–706 (2014). https://doi.org/10.1039/c3cs60249d

  93. Stewart, V., Parales, J.: Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J. Bacteriol. 170, 1589–1597 (1988). https://doi.org/10.1128/jb.170.4.1589-1597.1988

  94. Strous, M., van Gerven, E., Zheng, P., Kuenen, J.G., Jetten, M.S.M.: Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Res. 31, 1955–1962 (1997). https://doi.org/10.1016/S0043-1354(97)00055-9

  95. Suto, R., Ishimoto, C., Chikyu, M., Aihara, Y., Matsumoto, T., Uenishi, H., et al.: Anammox biofilm in activated sludge swine wastewater treatment plants. Chemosphere 167, 300–307 (2017). https://doi.org/10.1016/j.chemosphere.2016.09.121

  96. Tajtáková, M., Semanová, Z., Tomková, Z., Szökeová, E., Majoroš, J., Rádiková, Ž., et al.: Increased thyroid volume and frequency of thyroid disorders signs in school children from nitrate polluted area. Chemosphere 62, 559–564 (2006). https://doi.org/10.10.1016/j.-chemosphere.2005.06.030

  97. Torres, M.J., Simon, J., Rowley, G., Bedmar, E.J., Richardson, D.J., Gates, A.J., Delgado, M.J.: Nitrous oxide metabolism in nitrate-reducing bacteria: physiology and regulatory mechanisms. Adv. Microb. Physiol. 68, 353–432 (2016). https://doi.org/10.1016/bs.ampbs.2016.02.007

  98. Tricker, A.R., Preussmann, R.: Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat. Res. Genet. Toxicol. 259, 277–289 (1991). https://doi.org/10.1016/0165-1218(91)90123-4

  99. Tumendelger, A., Alshboul, Z., Lorke, A.: Methane and nitrous oxide emission from different treatment units of municipal wastewater treatment plants in Southwest Germany. PLoS One 14, e0209763 (2019). https://doi.org/10.1371/journal.pone.0209763

  100. Uemoto, H., Saiki, H.: Nitrogen removal by tubular gel containing Nitrosomonas europaea and Paracoccus denitrificans. Appl. Environ. Microbiol. 62, 4224–4228 (1996)

    Google Scholar 

  101. Van de Graaf, A.A., Bruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G.: Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142, 2187–2196 (1996). https://doi.org/10.1099/13500872-142-8-2187

  102. Van Niftrik, L., Jetten, M.S.M.: Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol. Mol. Biol. Rev. 76, 585–596 (2012). https://doi.org/10.1128/MMBR.05025-11

  103. van Niftrik, L., van Helden, M., Kirchen, S., van Donselaar, E.G., Harhangi, H.R., Webb, R.I., et al.: Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium ‘Candidatus Kuenenia stuttgartiensis’. Mol. Microbiol. 77(3), 701–715 (2010). https://doi.org/10.1111/j.1365-2958.2010.07242.x

  104. Van Spanning, R.J., Boer, A.P., Reijnders, W.N., Westerhoff, H.V., Stouthamer, A.H., van der Oost, J.: FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol. Microbiol. 23, 893–907 (1997). https://doi.org/10.1046/j.1365-2958.1997.2801638.x

  105. Velthof, G.L., Lesschen, J.P., Webb, J., Pietrzak, S., Miatkowski, Z., Pinto, M., et al.: The impact of the nitrates directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Sci. Total Environ. 468–469, 1225–1233 (2014). https://doi.org/10.1016/j.scitotenv.2013.04.058

  106. VIBRIGENS—Accelerating SynBio. In: iGEM Team Marburg 2018 (2018). https://2018.igem.org/Team:Marburg/Team

  107. Virginia iGEM Team 2017: Sewage PD—a single chassis ammonia removal device for use in wastewater treatment systems (2017). https://2017.igem.org/Team:Virginia

  108. Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A., Yang, J.: 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017). https://doi.org/10.1016/j.ajhg.2017.06.005

  109. Vladimir, P., Ong, J.L., Kucera, R.B., Langhorst, B.W., Bilotti, K., Pryor, J.M., et al.: Optimization of Golden Gate assembly through application of ligation sequence-dependent fidelity and bias profiling (1321) (2018)

    Google Scholar 

  110. Wagner, M.: Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009). https://doi.org/10.1146/annurev.micro.091208.073233

  111. Wakida, F.T., Lerner, D.N.: Non-agricultural sources of groundwater nitrate: a review and case study. Water Res. 39(1), 3–16 (2005). https://doi.org/10.1016/j.watres.2004.07.026

  112. Wang, H.H.: Synthetic genomes for synthetic biology. J. Mol. Cell Biol. 2, 178–179 (2010). https://doi.org/10.1093/jmcb/mjq015

  113. Wang, Z., Zhang, X.X., Lu, X., Liu, B., Li, Y., Long, C., Li, A.: Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS One 9(11), e113603 (2014). https://doi.org/10.1371/journal.pone.0113603

  114. Ward, M.H., deKok, T.M., Levallois, P., Brender, J., Gulis, N.B.T., VanDerslice, J.: Workgroup report: drinking-water nitrate and health—recent findings and research needs. Environ. Health Perspect. 113, 1607–1614 (2005). https://doi.org/10.1289/ehp.8043

  115. Ward, M., Jones, R., Brender, J., Kok, T., Weyer, P., Nolan, B., Villanueva, C.M., van Breda, S.G.: Drinking water nitrate and human health: an updated review. IJERPH 15, 1557 (2018). https://doi.org/10.3390/ijerph15071557

  116. Warneke, S., Schipper, L.A., Bruesewitz, D.A., Baisden, W.T.: A comparison of different approaches for measuring denitrification rates in a nitrate removing bioreactor. Water Res. 45, 4141–4151 (2011). https://doi.org/10.1016/j.watres.2011.05.027

  117. Warneke, S., Schipper, L.A., Matiasek, M.G., Scow, K.M., Cameron, S., Bruesewitz, D.A., McDonald, I.R.: Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Res. 45, 5463–5475 (2011). https://doi.org/10.1016/j.watres.2011.08.007

  118. Wentzel, M.C., Ekama, G.A., Marais, G.V.R.: Processes and modelling of nitrification denitrification biological excess phosphorus removal systems—a review. Water Sci. Technol. 25, 59–82 (1992). https://doi.org/10.2166/wst.1992.0114

  119. Wu, Y., Lu, L., Wang, B., Lin, N., Zhu, J., Cai, Z., Yan, X., Jia, Z.: Long-term field fertilization significantly alters community structure of ammonia-oxidizing bacteria rather than archaea in a paddy soil. SSSAJ 75, 1431–1439 (2011). https://doi.org/10.2136/sssaj2010.0434

  120. Yang, J., Kim, B., Kim, G.., Jung, G.Y., Seo, S.W.: Synthetic biology for evolutionary engineering: from perturbation of genotype to acquisition of desired phenotype. Biotech. Biofuels 12, S. 113 (2019). https://doi.org/10.1186/s13068-019-1460-5

  121. Yao, S., Ni, J., Ma, T., Li, C.: Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresour. Technol. 139, 80–86 (2013). https://doi.org/10.1016/j.biortech.2013.03.189

  122. Zhang, Y., Angelidaki, I.: Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Res. 46, 6445–6453 (2012). https://doi.org/10.1016/j.watres.2012.09.022

  123. Zhang, L., Shen, Z., Fang, W., Gao, G.: Composition of bacterial communities in municipal wastewater treatment plant. Sci. Total Environ. 689, 1181–1191 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.432

  124. Zhao, J., Wu, J., Li, X., Wang, S., Hu, B., Ding, X.: The denitrification characteristics and microbial community in the cathode of an MFC with aerobic denitrification at high temperatures. Front. Microbiol. 8, 9 (2017). https://doi.org/10.3389/fmicb.2017.00009

  125. Zhao, H., Zeng, An-Ping (Hg.): Synthetic Biology - Metabolic Engineering. 1st edition 2018. Cham: Springer International Publishing (Advances in Biochemical Engineering/Biotechnology) (2018).

    Google Scholar 

  126. Zumft, W.G.: Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Schoen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schorr, L., Schoen, J., Benckiser, G. (2021). Synthetic Biology and the Possibilities in Achieving a Plant Demand and Soil Buffer Capacity Adapted Nitrogen (N) Recycling. In: Benckiser, G. (eds) Soil and Recycling Management in the Anthropocene Era. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-51886-8_5

Download citation

Publish with us

Policies and ethics