Skip to main content

Viral Symbiosis in the Origins and Evolution of Life with a Particular Focus on the Placental Mammals

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 69))

Abstract

Advances in understanding over the last decade or so highlight the need for a reappraisal of the role of viruses in relation to the origins and evolution of cellular life, as well as in the homeostasis of the biosphere on which all of life depends. The relevant advances have, in particular, revealed an important contribution of viruses to the evolution of the placental mammals, while also contributing key roles to mammalian embryogenesis, genomic evolution, and physiology. Part of this reappraisal will include the origins of viruses, a redefinition of their quintessential nature, and a suggestion as to how we might view viruses in relation to the tree of life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aiewakun P, Katzourakis A (2017) Marine origin of retroviruses in the early Palaeozoic era. Nat Comm 8:13954. https://doi.org/10.1038/ncomms13954|www.nature.com/naturecommunications

    Article  Google Scholar 

  • Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA et al (2006) The marine Viromes of four oceanic regions. PLoS Biol 4(11):2121–2131

    CAS  Google Scholar 

  • Bannert N, Hofmann H, Block A, Hohn O (2018) HERVs new role in cancer: from accused perpetrators to cheerful protectors. Frontiers in Microbiol 9:178

    Google Scholar 

  • Bansho Y, Ichihashi N, Kazuta Y, Matsuura T, Suzuki H, Yomo T (2012) Importance of parasite RNA species repression for prolonged translation-coupled RNA self-replication. Chem Biol 19:478–487

    CAS  PubMed  Google Scholar 

  • Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryotic evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44. https://doi.org/10.1186/1471-2148-4-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell PJL (2009) The viral eukaryogenesis hypothesis: a key role for viruses in the emergence of eukaryotes from a prokaryotic world environment. Ann NY Acad Sci 1178:91–105

    CAS  PubMed  Google Scholar 

  • Blaise S, de Parseval N, Bénit L, Heidmann T (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci U S A 100:13013–13018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blond J-L, Lavillette D, Cheynet V, Bouton O, Oriol G et al (2000) An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74:3321–3329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolze P-A, Mommert M, Mallet F (2017) Contributions of syncytins and other endogenous retroviral envelopes to human placenta pathologies. Prog Mol Biol and Trans Sci 1877-1173:111–162. https://doi.org/10.1016/bs.pmbts.2016.005

    Article  Google Scholar 

  • Bosch E, Jobling MA (2003) Duplications of the AZFa region of the human Y chromosome are mediated by homologous recombination between HERVs and are compatible with male fertility. Hum Mol Genet 12:341–347

    CAS  PubMed  Google Scholar 

  • Bremermann HJ (1983) Parasites at the origin of life. J Math Biol 16:165–180

    CAS  PubMed  Google Scholar 

  • Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E (2006) At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J Virol 80:10752–10762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML et al (2017) Assembly of a nucleus-like structure during viral replication in bacteria. Science 355:194–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chuong EB, Elde NC, Feschotte C (2016) Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351:1083–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claverie JM, Ogata H (2009) Ten good reasons not to exclude viruses from the evolutionary picture. Nat Rev Microbiol 7(8):615. https://doi.org/10.1038/nrmicro2108-c3

    Article  CAS  PubMed  Google Scholar 

  • Colizzi ES, Hogeweg P (2016) Parasites sustain and enhance RNA-like replicators through spatial self-organisation. PLoS Comput Biol 12(4):e1004902. https://doi.org/10.1371/journal.pcbi.1004902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier L, Oxford J (1993) Human Virology. Oxford University Press, Oxford

    Google Scholar 

  • Cornelis G, Heidmann O, Bernard-Stoecklin S, Reynaud K, Véron G et al (2012) Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proc Natl Acad Sci U S A 109(7):E432–E441. https://doi.org/10.1073/pnas.1115346109

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelis G, Heidmann O, Degrelle SA, Vernochet C, Lavialle C et al (2013) Captured retroviral envelope syncytin gene associated with unique placental structure of higher ruminants. Proc Natl Acad Sci U S A 110(9):E828–E837. https://doi.org/10.1073/pnas.1215787110

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelis G, Vernochet C, Carradec Q, Souquere S, Mulot B et al (2015) Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials. Proc Natl Acad Sci U S A 111(41):E4332–E4341. https://doi.org/10.1073/pnas.1417000112

    Article  CAS  Google Scholar 

  • Cornelis G, Vernochet C, Malicorne S, Souquere S, Tzika AC et al (2014) Retroviral envelope syncytin capture in an ancestrally diverged mammalian clade for placentation in the primitive Afrotherian tenrecs. Proc Natl Acad Sci U S A 111(41):E4332–E4341. www.pnas.org/cgi/doi/10.1073/pnas.1412268111

    CAS  PubMed  PubMed Central  Google Scholar 

  • d’Herelle F (1926) The bacteriophage and its behaviour. Ballière, Tindall and Cox, London. Chapter V: 211. See also pp 326, 343 and 354

    Google Scholar 

  • Dawkins R, Leelayuwat C, Gaudieri S, Tay G, Hui J et al (1999) Genomics of the major histocompatibility complex: haplotypes, duplication, retroviruses and disease. Immunol Rev 167:275–304

    CAS  PubMed  Google Scholar 

  • De Bary A (1879) Die Erscheinung der Symbiose. In: Vortrag auf der Versammlung der Naturforscher und Ärtze zu Cassel. Verlag von Karl J Trubner, Strasburg, pp 1–30

    Google Scholar 

  • De La Torre JC, Holland JJ (1990) RNA virus quasispecies populations can suppress vastly superior mutant progeny. J Virol 64(12):6278–6281

    PubMed  PubMed Central  Google Scholar 

  • Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M et al (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64

    CAS  PubMed  Google Scholar 

  • Doolittle WF (2000) Uprooting the tree of life. Sci Amer 282:90–95

    CAS  PubMed  Google Scholar 

  • Douglas A (1994) Symbiotic interactions. Oxford University Press, New York

    Google Scholar 

  • Dupressoir AC, Vernochet O, Bawa Harper F, Pierron G et al (2009) Syncytin-a knockout mice demonstrate the critical role in placentation of fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A 106(2):12127–12132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durzyńska J, Goździcka-Jósefiak A (2015) Viruses and cells intertwined since the dawn of evolution. Virol J 12:169. https://doi.org/10.1186/s12985-015-0400-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckardt NA (2006) Genetic and epigenetic regulation of embryogenesis. Plant Cell 18:781–784

    CAS  PubMed Central  Google Scholar 

  • Eigen M, Schuster P (1977) The Hypercycle. A principle of natural self-organisation. Part a: emergence of the Hypercycle. Naturwissenschaften 64:541–565

    CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1978a) The Hypercycle. A principle of natural self-organisation. Part B: the abstract Hypercycle. Naturwissenschaften 65:7–41

    Google Scholar 

  • Eigen M, Schuster P (1978b) The Hypercycle. A principle of natural self-organisation. Part C: the realistic Hypercycle. Naturwissenschaften 65:341–369

    CAS  Google Scholar 

  • Eigen M, Schuster P (1979) The Hypercycle: a principle of natural self-organization. Springer ISBN 0-387-09293-5

  • Fei C, Atterby C, Edqvist P-H, Ponten F, Zhang WW et al (2014) Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics. J Roy Soc Med 107(1):22–29. https://doi.org/10.1177/0141076813509981

    Article  PubMed  PubMed Central  Google Scholar 

  • Fierz W (2017) Multiple sclerosis: an example of pathogenic viral interaction? Virol J 14:42–48. https://doi.org/10.1186/s12985-017-0719-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filée J, Forterre P, Laurent J (2003) The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies. Research in Virol 154:237–243

    Google Scholar 

  • Fisher S (2010) Are RNA viruses vestiges of an RNA world? J Gen Philos Sci 41:121–141

    Google Scholar 

  • Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117:5–16

    CAS  PubMed  Google Scholar 

  • Forterre P (2013) The Great Virus Comeback (translated from the French). Biol Aujourdhui 207(3):153–168

    PubMed  Google Scholar 

  • Frank AB (1877) Über die biologischen Verhältnisse des Thallus eineger Krustenflechten. Beitrage zur Biologie der Pflanzen 2:123–200

    Google Scholar 

  • Frank AB (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Berichte der Deutschen Botanischen Gesellschaft 3:128–145

    Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    CAS  PubMed  Google Scholar 

  • Glansdorf N, Xu Y, Labedan B (2008) The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3:29. https://doi.org/10.1186/1745-6150-3-29

    Article  CAS  Google Scholar 

  • Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Phil Trans Roy Soc B 361:1007–1022. https://doi.org/10.1098/rstb.2006.1841

    Article  CAS  Google Scholar 

  • Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, Martin L, Ware CB, Blish CA, Chang HY, Pera RA, Wysocka J (2015a) Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522:221–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M et al (2015b) Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522:221–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Zhu P, Yan L, Li R, Hu B et al (2014) The DNA methylation landscape of human early embryos. Nature 511:606–610

    CAS  PubMed  Google Scholar 

  • Hambly E, Suttle CA (2005) The virosphere, diversity, and genetic exchange within phage communities. Curr Opinion Microbiol 8:444–450

    CAS  Google Scholar 

  • Hedge NR, Maddur MS, Kaveri SV, Bayry J (2009) Reasons to include viruses in the tree of life. Nat Rev Microbiol 7(8):615. https://doi.org/10.1038/nrmicro2108-c1

    Article  CAS  Google Scholar 

  • Holland JJ, De La Torre JC, Steinhauer DA (1992) RNA virus populations as quasispecies. Curr Top Microbiol Immunol 176:1–20

    CAS  PubMed  Google Scholar 

  • Holmes EC (2011) What does virus evolution tell us about virus origins? J Virol 85(11):5427–5251

    Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ et al (2016) A new view of the tree of life. Nat Microbiol 1:16048. https://doi.org/10.1038/nmiccrobiol.2016.48

    Article  CAS  PubMed  Google Scholar 

  • Hughes JF, Coffin JM (2001) Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat Genet 29:487–489

    CAS  PubMed  Google Scholar 

  • Jordan K, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19(2):68–72

    CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (1999) The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes an additional carboxy-terminal sequence in the human leptin receptor. J Mol Evol 48:248–251

    CAS  PubMed  Google Scholar 

  • Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia a resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166

    CAS  PubMed  Google Scholar 

  • Kim H-S, Yi J-M, Hirai H, Huh J-W, Jeong M-S et al (2006) Human endogenous retrovirus (HERV)-R in primates: chromosomal location, gene expression, and evolution. Gene 370:34–42. https://doi.org/10.1016/j.gene.2005.11.008

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV (2001) The logic of chance: the nature and origin of biological evolution. F.T. Press Science, Upper Saddle River, NJ

    Google Scholar 

  • Koonin EV (2011) The logic of chance: the nature and origin of biological evolution. F.T. Press Science, New Jersey

    Google Scholar 

  • Koonin EV, Dolja VV (2013) A virocentric perspective on the evolution of life. Curr Opin Virol 3(5):546–557

    PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Dolja VV, Krupovic M (2015) Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virol 479-480:2–25

    CAS  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and the evolution of cells. Biol Direct 1:29. https://doi.org/10.1186/1745-6150-1-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2009) Compelling reasons why viruses are relevant for the origin of cells. Nat Rev Microbiol 7(8):615. https://doi.org/10.1038/nrmicro2108-c5

    Article  CAS  PubMed  Google Scholar 

  • Krupovic M, Dutilh BE, Adriaenssens EM, Wittmann J, Vogensen FK et al (2016) Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol 161:1095–1099

    CAS  PubMed  Google Scholar 

  • Krupovic M, Prangishvil D, Hendrix RW, Bamford DH (2011) Genomics of bacterial and Archaeal viruses: dynamics within the prokaryotic Virosphere. Microbiol and Mol Biol Rev 75(4):610–635

    Google Scholar 

  • Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm W (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci U S A 101(30):11013–11018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long SR (2001) Genes and signals in the rhizobium-legume symbiosis. Plant Physiol 125:69–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-García P, Eme L, Moreira D (2017) Symbiosis in eukaryotic evolution. J Theor Biol 434:20–33

    PubMed  PubMed Central  Google Scholar 

  • López-Garcia P, Moreira D (2009) Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7:306–311

    PubMed  Google Scholar 

  • López-Garcia P, Moreira D (2009b) Yet viruses cannot be included in the tree of life. Nature Rev Microbiol 7:306–311. https://doi.org/10.1038/nrmicro2108-c1

    Article  CAS  Google Scholar 

  • Lu X, Sachs F, Ramsay L, Jacques PE, Jacques PÉ et al (2014) The retrovirus HERV-H is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 21(4):423–425

    CAS  PubMed  Google Scholar 

  • Ludmir EB, Enquist LW (2009) Viral genomes are part of the phylogenetic tree of life. Nat Rev Microbiol 7(8):615. https://doi.org/10.1038/nrmicro2108-c4

    Article  CAS  PubMed  Google Scholar 

  • Luria SE, Darnell JE (1967) General virology. John Wiley & Sons, INC., New York

    Google Scholar 

  • Mameli G, Poddighe L, Astone V, Delogu G, Arru G et al (2009) Novel reliable real-time PCR for differential detection of MSRVenv and syncytin-1 in RNA and DNA from patients with multiple sclerosis. J Virol Methods 161:98–106

    CAS  PubMed  Google Scholar 

  • Mameli G, Poddighe L, Mei A, Uleri E, Sotgiu S et al (2012) Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One 7(9):e44991. https://doi.org/10.1371/journal.pone.0044991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven and London

    Google Scholar 

  • Margulis L, Fester R (eds) (1991) Symbiosis as a source of evolutionary innovation. MIT Press, Cambridge Massachusetts and London

    Google Scholar 

  • Martin J, Herniou E, Cook J, O’Neill RW, Tristem M (1997) Human endogenous retrovirus type I-related viruses have an apparently widespread distribution within vertebrates. J Virol 71:437–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medstrand P, Landry JR, Mager DL (2001) Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem 276:1896–1903

    CAS  PubMed  Google Scholar 

  • Medstrand P, Mager DL (1998) Human-specific integrations of the HERV-K endogenous retrovirus family. J Virol 72:9782–9787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merezhkovskii C (1910) Retrospectively quoted in his paper, La plante considérée comme un complexe symbiotique. Bull de la Société Naturelles 6:17–98

    Google Scholar 

  • Mi S, Lee X, Li X-P, Veldman GM, Finnerty H et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    CAS  PubMed  Google Scholar 

  • Nasir AK, Kim M, Caetano-Annoles G (2012) Viral evolution. Primordial cellular origins and late adaptation to parasitism. Mob Genet Elem 2(5):247–252

    Google Scholar 

  • Navas-Castillo J (2009) Six comments on the ten reasons for the demotion of viruses. Nat Rev Microbiol 7(8):615. https://doi.org/10.1038/nrmicro2108-c2

    Article  CAS  PubMed  Google Scholar 

  • Naville M, Volff J-N (2016) Endogenous retroviruses in fish genomes: from relics of past infections to evolutionary innovations? Front Microbiol 7:1197. https://doi.org/10.3389/fmicb.2016.01197

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowak MA (1992) What is a Quasispecies? TREE 7:118–121

    CAS  PubMed  Google Scholar 

  • Pender MP, Csurhes PA, Smith C, Douglas NL, Neller MA et al (2018) Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight 3(22):e124714. https://doi.org/10.1172/jci.insight.124714

    Article  PubMed Central  Google Scholar 

  • Pierce SK, Mahadevan P, Massey SE, Middlebrooks ML (2016) A preliminary molecular and phylogenetic analysis of the genome of a novel endogenous retrovirus in the sea slug Elysia Chlorotica. Biol Bull 231:236–244

    CAS  PubMed  Google Scholar 

  • Pierce SK, Maugel TK, Rumpho ME, Hanten JJ, Mondy WL (1999) Annual viral expression in a sea slug population: life cycle control and symbiotic chloroplast maintenance. Biol Bull 197:1–6

    CAS  PubMed  Google Scholar 

  • Pittoggi C, Sciamanna I, Mattei E, Beraldi R, Lobascio AM et al (2003) Role of endogenous reverse transcriptase in murine early embryo development. Mol Reprod Dev 66:225–236

    CAS  PubMed  Google Scholar 

  • Pontén F, Gry M, Fagerberg L, Lundberg E, Asplund A et al (2009) A global view of protein expression in human cells, tissues, and organs. Mol Systems Biol 5:337. https://doi.org/10.1038/msb.2009.93

    Article  Google Scholar 

  • Prangashvili D, Garrett RA (2004) Exceptionally diverse morphotypes and genomes of crenarcheal hyperthermophilic viruses. Biochem Soc Trans 32(2):204–208

    Google Scholar 

  • Raoult D (2009) There is no such thing as a tree of life (and of course viruses are out!). Nat Rev Microbiol 7(8):615. https://doi.org/10.1038/nrmicro2108-c6

    Article  CAS  PubMed  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH et al (2006) Global variation in copy number in the human genome. Nature 444:444–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roossinck MJ, Martin DP, Roumagnac P (2015) Plant virus Metagenomics: advances in virus discovery. Phytopath Rev 105:716–727

    CAS  Google Scholar 

  • Rosario K, Breitbart M (2011) Exploring the viral world through metagenomics. Curr Opin Virol 1(1):289–297

    CAS  PubMed  Google Scholar 

  • Routledge SJ, Proudfoot NJ (2002) Definition of transcriptional promoters in the human beta globin locus control region. J Mol Biol 323:601–611

    CAS  PubMed  Google Scholar 

  • Ryan F (1997) Virus X. Little Brown Publishers, Boston, MA

    Google Scholar 

  • Ryan F (2002) Darwin’s blind spot. Houghton Mifflin, Boston and New York

    Google Scholar 

  • Ryan F (2009a) Virolution. Collins Publishers, London, UK

    Google Scholar 

  • Ryan F (2009b) An alternative approach to medical genetics based on modern evolutionary biology. Part 3: HERVs in diseases. J R Soc Med 102:415–424

    PubMed  PubMed Central  Google Scholar 

  • Ryan F (2016) Viral symbiosis and the holobiontic nature of the human genome. APMIS 124:11–19

    CAS  PubMed  Google Scholar 

  • Ryan F (2019) Virusphere. Collins Publishers, London, UK

    Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274

    CAS  PubMed  Google Scholar 

  • Sapp J (1994) Evolution by association: a history of Symbiosis. Oxford University Press, New York

    Google Scholar 

  • Shapiro JA (2019) No genome is an island: towards a 21st century agenda for evolution. Ann N Y Acad Sci 1447(1):21–52. https://doi.org/10.1111/nyas.14044

    Article  PubMed  Google Scholar 

  • Soygur B, Sati L (2016) The role of syncytins in human reproduction and reproductive organ cancers. Reproduction 152(5):R167–R178. Soc for Reprod and Fertility ISSN 1470-1626 (paper) 1741-7899 (online). https://doi.org/10.1530/REP-16-0031

    Article  CAS  PubMed  Google Scholar 

  • Spadafora C (2008) A reverse transcriptase-dependent mechanism plays central roles in fundamental biological processes. Systems Biol in Reprod Medi 54:11–21

    CAS  Google Scholar 

  • Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95:5145–5149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    CAS  PubMed  Google Scholar 

  • Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    CAS  PubMed  Google Scholar 

  • Takeuchi N, Hogewoeg P (2008) Evolution of complexity in RNA-like replicators systems. Biol Direct 3:11. https://doi.org/10.1186/1745-6150-3-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Laagemaat LN, Landry J-R, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19(10):530–536

    Google Scholar 

  • Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348

    CAS  PubMed  Google Scholar 

  • Villarreal LP (2005) Viruses and the evolution of life. ASM Press, Washington, DC

    Google Scholar 

  • Villarreal LP (2014) Force for ancient and recent life: viral and stem-loop RNA consortia promote life. Ann N. Y. Acad Sci 1341:25–34

    Google Scholar 

  • Villarreal LP, DeFilippis VR (2000) A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J Virol 74(15):7079–7084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villarreal LP, Ryan F (2011) Viruses in host evolution: general principles and future extrapolations. Curr Topics in Virol 9:79–90

    CAS  Google Scholar 

  • Villarreal LP, Witzany G (2010) Viruses are essential agents within the roots and stem of the tree of life. J Theoret Biol 262:698–710

    Google Scholar 

  • Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immun 15(5):415–422

    CAS  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788

    Google Scholar 

  • Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Ann Rev Virol 4:201–219

    CAS  Google Scholar 

  • Williamson KE, Radosevich M, Smith DW, Wommack KE (2007) Incidence of lysogeny within temperate and extreme soil environments. Environ Microbiol 9:2563–2574

    CAS  PubMed  Google Scholar 

  • Williamson KE, Radosevich M, Wommack ME (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71(60):3119–31125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains, Archaea, bacteria and Eukarya. Proc Nat Acad Sci 87(12):4576–4579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wommack KE, Colwell RR (2000) Viroplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman L, Meyer JL, Devangam S, Bryson DM, Lenski RE, Ofria C (2014) Coevolution drives the emergence of complex traits and promotes evolvability. PLoS Biol 12(12):e1002023. https://doi.org/10.1371/journal.pbio.1002023

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Ryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ryan, F. (2020). Viral Symbiosis in the Origins and Evolution of Life with a Particular Focus on the Placental Mammals. In: Kloc, M. (eds) Symbiosis: Cellular, Molecular, Medical and Evolutionary Aspects. Results and Problems in Cell Differentiation, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-51849-3_1

Download citation

Publish with us

Policies and ethics