Skip to main content

Submarine Groundwater Discharge Along the Israeli Eastern Mediterranean Coast and in Inland Basins

  • Chapter
  • First Online:
The Many Facets of Israel's Hydrogeology

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

Submarine groundwater discharge (SGD) includes all water that discharges directly from the aquifer and coastal sediments to the sea. Fresh water SGD occurs mainly at the coastline, while saline SGD (circulated seawater) occurs up to the outer shelf or even upper slope. SGD affects both coastal aquifer water budgets and coastal seawater chemistry and quality, since it often carries with it solutes and contaminants. In Israel, it mainly occurs from the Mt. Carmel coast northward, where the Cretaceous carbonate aquifer is either in direct contact with the sea or exposed nearby. It was shown that at the southern Carmel coast (Dor Bay), fresh water discharge is on the order of >1 x 106 m3 yr−1, which if applied to the whole Carmel coast is more than is withdrawn from the local aquifer. Fresh groundwater discharge to the whole Mediterranean is about 20% of the riverine discharge. However, when total SGD is considered (by Ra isotope mass balance), it sums up to 200–4, 300 x 109 m3 yr−1, which is much higher than riverine discharge and is probably mainly due to offshore discharge across shelves and shallow seas. It was shown both at the local scale (Dor Bay) and for the whole Mediterranean that SGD is a major conveyor of nutrients to the Mediterranean, although some of the nitrates are denitrified in the sediments (‘subterranean estuary‘) en route to the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbo H, Shavit U, Markel D, Rimmer A (2003) A numerical study on the influence of fractured regions on lake/groundwater interaction; the Lake Kinneret (Sea of Galilee) case. J Hydrol 283:225–243

    Article  Google Scholar 

  • Akawwi E, Al-Zouab A, Kakish M, Koehn F, Sauter M (2008) Using thermal infrared imagery (TIR) for illustrating the submarine groundwater discharge into the eastern shoreline of the Dead Sea-Jordan. Am J Environ Sci 4(6):693–700. https://doi.org/10.3844/ajessp.2008.693.700

    Article  Google Scholar 

  • Amato DW, Bishop JM, Glenn CR, Dulai H, Smith CM (2016) Impact of submarine groundwater discharge on marine water quality and Reef Biota of Maui. PLoS ONE 11(11):e0165825. https://doi.org/10.1371/journal.pone.0165825

    Article  Google Scholar 

  • Amir N, Kafri U, Herut B, Shalev E (2013) Numerical simulation of submarine groundwater flow in the coastal aquifer at the Palmahim Area, the Mediterranean Coast of Israel. Water Resour Manage 27(11):4005–4020

    Article  Google Scholar 

  • Arad A (1983) A summary of the artesian coastal basin of Guyana. J Hydrol 63(3–4):299–313

    Article  Google Scholar 

  • Basu AR, Jacobsen SB, Poreda RJ, Dowling CB, Aggar PK (2001) Large groundwater strontium flux to the oceans from the Bengal Basin and the marine strontium isotope record. Science 293:1470–1473

    Article  Google Scholar 

  • Beck AJ, Charette MA, Cochran JK, Gonneea ME, Peucker-Ehrenbrink B (2013) Dissolved strontium in the subterranean estuary—implications for the marine strontium isotope budget. Geochim Cosmochim Acta 117:33–52

    Article  Google Scholar 

  • Boehm AB, Paytan A, Shellenbarger GG, Davis KA (2004) Composition and flux of groundwater from a California beach aquifer: implications for nutrient supply to the surf zone. Cont Shelf Res 26:269–282

    Article  Google Scholar 

  • Boyle DR (1994) Design of a seepage meter for measuring groundwater fluxes in the nonlittoral zones of lakes—evaluation in a boreal forest lake. Limnol Oceanogr 39(3):670–681

    Article  Google Scholar 

  • Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J Environ Radioact 69:21–35

    Article  Google Scholar 

  • Burnett WC, Wattayakorn G, Taniguchi M, Dulaiova H, Sojisuporn P, Rungsupa S, Ishitobi T (2007) Groundwater-derived nutrient inputs to the Upper Gulf of Thailand. Cont Shelf Res 27:176–190

    Article  Google Scholar 

  • Cable JE, Martin JB (2008) In situ evaluation of nearshore marine and fresh pore water transport into Flamengo Bay, Brazil. Estuar Coast Shelf Sci 76:473–483

    Article  Google Scholar 

  • Cable JE, Burnett WC, Chanton JP, Weatherly G (1996) Modeling groundwater flow into the northeastern Gulf of Mexico based on 222Rn. Earth Planet Sci Lett 144:591–604

    Article  Google Scholar 

  • Cathles LM, Members of Working Group 3 (1987) Fluid circulation in the crust and the global geochemical budget. In: Report of the second conference on scientific ocean drilling, COSOD II, Strasbourg, France, pp 67–86

    Google Scholar 

  • Charette MA, Buesseler KO (2004) Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnol Ocean 49(2):376–385

    Article  Google Scholar 

  • Cohen D, Person M, Wang P (2010) Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA. Ground Water 48:143–158. https://doi.org/10.1111/j.1745-6584.2009.00627.x

  • Cooper HH (1959) A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. J Geophys Res 64:461–467

    Article  Google Scholar 

  • Dulaiova H, Camilli R, Henderson PB, Charette MA (2010) Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters. J Environ Radioact 101(7):553–563

    Article  Google Scholar 

  • Dror G, Ronen D, Stiller M, Nishri A (1999) Cl/Br ratios of Lake Kinneret, pore water and associated springs. J Hydrol 225(3–4):130–139

    Article  Google Scholar 

  • Fleury P, Bakalowicz M, de Marsily G (2007) Submarine springs and coastal karst aquifers: a review. J Hydrol 339:79–92

    Article  Google Scholar 

  • Garcia-Solsona E, Garcia-Orellana J, Masque P, Rodellas V, Mejıas M, Ballesteros B, Domınguez JA (2010) Groundwater and nutrient discharge through karstic coastal springs (Castelló, Spain). Biogeosciences 7:2625–2638

    Article  Google Scholar 

  • Garrels RM, MacKenzie FT (1967) Evolution of sedimentary rocks. Norton & Co.

    Google Scholar 

  • Gattacceca JC, Mayer A, Cucco A, Claude C, Radakovitch O, Vallet-Coulomb C, Hamelin B (2011) Submarine groundwater discharge in a subsiding coastal lowland: a 226Ra and 222Rn investigation in the Southern Venice lagoon. Appl Geochem 26(5):907–920

    Article  Google Scholar 

  • Gonneea ME, Charette MA, Liu Q, Herrera-Silveira JA, Morales-Ojeda SM (2014) Trace element geochemistry of groundwater in a karst subterranean estuary (Yucatan Peninsula, Mexico). Geochim Cosmochim Acta 132:31–49. https://doi.org/10.1016/j.gca.2014.01.037

    Article  Google Scholar 

  • Groen J, Velstra J, Meesters A (2000) Salinization processes in paleowaters in coastal sediments of Suriname: evidence from Δ 7Cl analysis and diffusion modelling. J Hydrol 234:1–20

    Google Scholar 

  • Hurwitz S, Goldman M, Ezersky M, Gvirtzman H (1999) Geophysical (time domain electromagnetic model) delineation of a shallow brine beneath a freshwater lake, the Sea of Galilee, Israel. Water Resour Res 35(12):3631–3638

    Article  Google Scholar 

  • Ionescu D, Siebert C, Polerecky L, Munwes YY, Lott C, Haüsler S, Bižić-Ionescu M, Quast C, Peplies J, Glöckner FO, Ramette A, Rödiger T, Dittmar T, Oren A, Geyer S, Stark H-J, Sauter M, Licha T, Laronne JB, de Beer D (2012) Microbial and chemical characterization of underwater fresh water springs in the Dead Sea. PLoS ONE 7(6):e38319. https://doi.org/10.1371/journal.pone.0038319

  • Johannes RE (1980) The ecological significance of the submarine discharge of groundwater. Mar Ecol Prog Ser 3:365–373

    Article  Google Scholar 

  • Johnston RH (1983) The salt-water–fresh-water interface in the tertiary limestone aquifer, southeast Atlantic outer continental-shelf of the USA. J Hydrol 61:239–249

    Google Scholar 

  • Johnson AG, Glenn CR, Burnett WC, Peterson RN, Lucey PG (2008) Aerial infrared imaging reveals large nutrient-rich groundwater inputs to the ocean. Geophys Res Lett 35:L15606. https://doi.org/10.1029/2008GL034574

    Article  Google Scholar 

  • Kafri U, Goldman M (2006) Are the lower subaquifers of the Mediterranean coastal aquifer blocked to seawater intrusion? Results of a TDEM (time domain electromagnetic) study. Isr J Earth Sci 55:55–68

    Article  Google Scholar 

  • Kiro Y, Weinstein Y, Yechieli Y, Starinsky A (2014) The role of long-term aquifer seawater circulation in elemental mass balances: a lesson from the Dead Sea. Earth Planet Sci Lett 394:146–158

    Article  Google Scholar 

  • Kiro Y, Weinstein Y, Starinsky A, Yechieli Y (2015) Application of radon and radium isotopes to groundwater flow dynamics: an example from the Dead Sea. Chem Geol 411:155–171

    Article  Google Scholar 

  • Klein-Ben David O, Sass E, Katz A (2004) The evolution of marine evaporitic brines in inland basins: the Jordan-Dead Sea Rift valley. Geochim Cosmochim Acta 68(8):1763–1775

    Article  Google Scholar 

  • Kolodny Y, Katz A, Starinsky A, Moise T, Simon E (1999) Chemical tracing of salinity sources in Lake Kinneret (Sea of Galilee), Israel. Limnol Oceanogr 44(4):1035–1044

    Article  Google Scholar 

  • Kwon EY, Kim G, Primeau F, Moore WS, Cho H-M, DeVries T, Sarmiento JL, Charette MA, Cho Y-K (2014) Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys Res Lett 41. https://doi.org/10.1002/2014GL061574

  • Kwon HK, Kang H, Oh YH, Park SR, Kim G (2017) Green tide development associated with submarine groundwater discharge in a coastal harbor, Jeju, Korea. Sci Rep 7: 6325. https://doi.org/10.1038/s41598-017-06711-0

  • Lazar B, Weinstein Y, Paytan A, Magal E, Bruce D, Kolodny Y (2008) Ra and Th adsorption coefficients in lakes—Lake Kinneret (Sea of Galilee) “natural experiment”. Geochim Cosmochim Acta 72(14):3446–3459

    Article  Google Scholar 

  • Lee DR (1977) A device for measuring seepage flux in lakes and estuaries. Limnol Oceanogr 22(1):140–147

    Google Scholar 

  • Lensky NG, Dvorkin Y, Lyakhovsky V, Gertman I, Gavrieli I (2005) Water, salt, and energy balances of the Dead Sea. Water Resour Res 41:W12418

    Article  Google Scholar 

  • Li L, Barry DA, Stagnitti F, Parlange JY (1999) Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour Res 35:3253–3259

    Article  Google Scholar 

  • Mallast U, Siebert C (2018) Combining continuous spatial and temporal scales for SGD investigations using UAV-based thermal infrared measurements. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-2018-361

  • Mallast U, Schwonke F, Gloaguen R, Geyer S, Sauter M, Siebert C (2013) Airborne thermal data identifies groundwater discharge at the North-Western Coast of the Dead Sea. Remote Sens 5:6361–6381. https://doi.org/10.3390/rs5126361

  • Mazor E (1978) Mineral waters of the Kinneret basin and possible origin. In: Serruya C (ed) Lake Kinneret. Monographiae Biologicae 32, pp 103–120

    Google Scholar 

  • Mero F (1978) The water balance of Lake Kinneret. In: Serruya C (ed) Lake Kinneret. Monographiae Biologicae 32, pp 99–102

    Google Scholar 

  • Michael HA, Mulligan AE, Harvey CF (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436:1145–1148

    Article  Google Scholar 

  • Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380:612–661

    Article  Google Scholar 

  • Moore WS (1999) The subterranean estuary: a reaction zone of groundwater and sea water. Mar Chem 65:111–126

    Article  Google Scholar 

  • Moore WS, Wilson AM (2005) Advective flow through the upper continental shelf driven by storms, buoyancy, and submarine groundwater discharge. Earth Planet Sci Lett 235:564–576

    Article  Google Scholar 

  • Moore WS, Sarmiento JL, Key RM (2008) Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean. Nat Geosci 1:309–311

    Article  Google Scholar 

  • Mortimer RJG, Krom MD, Boyle DR, Nishri A (1999) Use of a high-resolution pore-water gel profiler to measure groundwater fluxes at an underwater saline seepage site in Lake Kinneret, Israel. Limnol Oceanogr 44:1802–1809

    Article  Google Scholar 

  • Nace RL (1970) World Hydrology: status and prospects. In: World water balance. In: I. Symposium for the Association of Internationale D’Hydrologie Scientifique Publication No. 92, pp 1–10

    Google Scholar 

  • Narovlansky Y (2018) Examining the connectivity of coastal confined aquifers to the Mediterranean Sea by tidal fluctuation. M.Sc. thesis, Bar-Ilan University

    Google Scholar 

  • Nishri A, Stiller M, Rimmer A, Geifman Y, Krom M (1999) Lake Kinneret (the Sea of Galilee): the effects of diversion of external salinity sources and the probable chemical composition of the internal salinity sources. Chem Geol 158:37–52

    Article  Google Scholar 

  • Nishri A, Boyle DR, Koren N, Stiller M (2002) The contribution of water and chloride to Lake Kinneret through unfocused seepage, based on in situ seepage measurements. Isr J Earth Sci 51:269–279

    Article  Google Scholar 

  • Oberdorfer JA (2003) Hydrogeologic modeling of submarine groundwater discharge: comparison to other quantitative methods. Biogeochemistry 66:159–169

    Article  Google Scholar 

  • Paldor A, Aharonov E, Katz O (2019) Dynamics of saltwater intrusion and submarine groundwater discharge in confined coastal aquifers: a case study in northern Israel. Hydrogeol J. https://doi.org/10.1007/s10040-019-01958-5

    Article  Google Scholar 

  • Paldor A, Katz O, Aharonov E, Weinstein Y, Roditi-Elasar M, Lazar A, Lazar B (2020) Deep submarine groundwater discharge—evidence from Achziv submarine canyon at the exposure of the Judea group confined aquifer, Eastern Mediterranean. J Geophys Res Oceans 125:e2019JC015435. https://doi.org/10.1029/2019JC015435

  • Person M, Dugan B, Swenson JB, Urbano L, Stott C, Taylor J, Willett M (2003) Pleistocene hydrogeology of the Atlantic continental shelf, New England. Bul Geol Soc Am 115(11):1324–1343. https://doi.org/10.1130/B25285.1

  • Post VEA, Groen J, Kooi H, Person M, Ge S, Edmunds WM (2013) Offshore fresh groundwater reserves as a global phenomenon. Nature 504:71–78

    Article  Google Scholar 

  • Rapagliaa J, Ferrarin C, Zaggia L, Moore WS, Umgiesser G, Garcia-Solsonac E, Garcia-Orellanac J, Masqué P (2010) Investigation of residence time and groundwater flux in Venice Lagoon: comparing radium isotope and hydrodynamical models. J Environ Radioact 101(7):571–581

    Article  Google Scholar 

  • Ratner-Narovlansky Y, Weinstein Y, Yechieli Y (2019) Tidal fluctuations in a multi-unit coastal aquifer. J Hydrol 580:124222

    Google Scholar 

  • Rimmer A, Hurwitz S, Gvirtzman H (1999) Spatial and temporal characteristics of saline springs: Sea of Galilee, Israel. Ground Water 37:663–673

    Article  Google Scholar 

  • Rodellas V, Garcia-Orellana1 J, Masqué P, Feldman M, Weinstein Y (2015) Submarine groundwater discharge: a major source of nutrients to the Mediterranean Sea. Proc Natl Acad Sci 112(13):3926–3930

    Google Scholar 

  • Schwartz MC (2003) Significant groundwater input to a coastal plain estuary: assessment from excess radon. Estuar Coast Shelf Sci 56:31–42.dd

    Google Scholar 

  • Shaban A, Khawalie M, Abdallah C, Faour G (2005) Geologic controls of submarine groundwater discharge: application of remote sensing to north Lebanon. Environ Geol 47. https://doi.org/10.1007/s00254-004-1172-3

  • Shaw RD, Prepas EE (1990) Groundwater-lakes interactions: II. Nearshore seepage patterns and the contribution of groundwater to lakes in central Alberta. J Hydrol 119:121–136

    Google Scholar 

  • Shelenbarger GG, Monismith SG, Genin A, Paytan A (2006) The importance of submarine groundwater discharge to the nearshore nutrient supply in the Gulf of Aqaba (Israel). Limnol Oceanogr 51(4):1876–1886

    Article  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  Google Scholar 

  • Smith AJ, Turner JV (2001) Density-dependent surface water–groundwater interaction and nutrient discharge in the Swan-Canning Estuary. Hydrol Proc 15:2595–2616

    Article  Google Scholar 

  • Smith CG, Swarzenski PW (2012) An investigation of submarine groundwater–borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnol Oceanogr 57(2):471–485

    Google Scholar 

  • Smith SV, Serruya S, Geifman Y, Berman T (1989) Internal sources and sinks of water, P, N, Ca, and Cl in Lake Kinneret, Israel. Limnol Oceanogr 34(7):1202–1213

    Article  Google Scholar 

  • Starinsky A (1974) Ca-chloride brines and sedimentary rocks relations in the northern rift valley, Israel. PhD thesis, The Hebrew University, Jerusalem, 176 p

    Google Scholar 

  • Swarzenski PW, Burnett WC, Greenwood WJ, Herut B, Peterson R, Dimova N, Shalem Y, Yechieli Y, Weinstein Y (2006) Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach Israel. Geophys Res Lett 33:L24405. https://doi.org/10.1029/2006GL028282

    Article  Google Scholar 

  • Tal A, Weinstein Y, Walman S, Goldman M, Yechieli Y (2018) The interrelations between a multi-layered coastal aquifer, a surface reservoir (fish ponds) and the sea. Water 10:1426. https://doi.org/10.3390/w10101426

    Article  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JF (2002) Investigation of submarine groundwater discharge. Hydrol Proc 16:2115–2129

    Article  Google Scholar 

  • Taniguchi M, Ishitobi T, Shimada J (2006) Dynamics of submarine groundwater discharge and freshwater-seawater interface. J Geophys Res 111:C01008. https://doi.org/10.1029/2005jc002924

  • Tovar-Sánchez A, Basterretxea G, Rodellas V, Sánchez-Quiles D, García-Orellana J, Masqué P, Jordi A, López JM, Garcia-Solsona E (2014) Contribution of groundwater discharge to the coastal dissolved nutrients and trace metal concentrations in Majorca Island: Karstic vs detrital systems. Environ Sci Technol 48(20):11819–11827

    Article  Google Scholar 

  • Tsabaris C, Anagnostou MN, Patiris DL, Nystuen JA, Eleftheriou G, Dakladas Th, Papadopoulos V, Prospathopoulos A, Papadopoulos A, Anagnostou EN (2011) A marine groundwater spring in Stoupa, Greece: shallow water instrumentation comparing radon and ambient sound with discharge rate. Proc Earth Planet Sci 4:3–9

    Article  Google Scholar 

  • Valiela I, Costa JE (1988) Eutrophication of Buttermilk Bay, a Cape Cod coastal embayment: concentrations of nutrients and watershed nutrient budgets. Environ Manage 12:539–553

    Article  Google Scholar 

  • Weinstein Y, Katz A, Kastner M, Nishri A, Jannasch H (2003) Brine heterogeneity and dispersed interstitial advective flow underneath the Sea of Galilee, Israel. European Geophysical Society Meeting, Geophysical Research Abstracts 5, p 7706

    Google Scholar 

  • Weinstein Y, Less G, Kafri U, Herut B (2006) Submarine groundwater discharge in the southeastern Mediterranean (Israel), preliminary results. Radioact Environ 8:360–372

    Article  Google Scholar 

  • Weinstein Y, Burnett WC, Swarzenski PW, Shalem Y, Yechieli Y, Herut B (2007a) The role of coastal aquifer heterogeneity in determining fresh groundwater discharge and seawater recycling: an example from the Carmel coast, Israel. J Geophys Res 112:C12016. https://doi.org/10.1029/2007JC004112

    Article  Google Scholar 

  • Weinstein Y, Shalem Y, Burnett WC, Swarzenski PW Herut B (2007b) Temporal variability of submarine groundwater discharge: assessments via radon and seep meters, the southern Carmel Coast, Israel. In: Sanford W (ed) A new focus on groundwater–seawater interactions. IAHS Publ. 312. IAHS Press, Wallingford, UK, pp 125–133

    Google Scholar 

  • Weinstein Y, Yechieli Y, Shalem Y, Burnett WC, Swarzenski PW, Herut B (2011) What is the role of fresh groundwater and recirculated seawater in conveying nutrients to the coastal ocean? Environ Sci Technol 45(12):5195–5200. https://doi.org/10.1021/es104394r

    Article  Google Scholar 

  • Wilson AM, Gardner LR (2006) Tidally driven groundwater flow and solute exchange in a marsh: numerical simulations. Water Resour Res 42:W01405. https://doi.org/10.1029/2005wr004302

  • Zektser IS, Dzhamalov RG (2007) Submarine groundwater. CRC Press, Boca Raton, FL, 466 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yishai Weinstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weinstein, Y. (2021). Submarine Groundwater Discharge Along the Israeli Eastern Mediterranean Coast and in Inland Basins. In: Kafri, U., Yechieli, Y. (eds) The Many Facets of Israel's Hydrogeology. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-51148-7_8

Download citation

Publish with us

Policies and ethics