Skip to main content

Exosomes: Novel Players of Therapy Resistance in Neuroblastoma

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

Neuroblastoma is a solid tumor (a lump or mass), often found in the small glands on top of the kidneys, and most commonly affects infants and young children. Among neuroblastomas, high-risk neuroblastomas are very aggressive and resistant to most kinds of intensive treatment. Immunotherapy, which uses the immune system to fight against cancer, has shown great promise in treating many types of cancer. However, high-risk neuroblastoma is often resistant to this approach as well. Recent studies revealed that small vesicles known as exosomes, which are envelopes, could deliver a cargo of small RNA molecules and provide communication between neuroblastoma cells and the surrounding cells and trigger metastasis and resistance to immunotherapy. In this chapter, we describe the role of exosomes and small RNA molecules in the metastasis and regression of neuroblastoma and the potential therapeutic approaches to combat this menace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3′-UTR :

Three prime untranslated region

ADCC :

Antibody-dependent cell cytotoxicity

AURKA:

Aurora kinase A

EFS:

Event-free survival

ESCRT:

Endosomal-sorting complex required for transport

GD2:

Disialoganglioside

IL-15:

Interleukin-15

IL-2:

Interleukin-2

ILV:

Intraluminal vesicle

MAb :

Monoclonal antibody

miRNA:

MicroRNA

mRNA:

Messenger RNA

MSCs:

Mesenchymal stem/stromal cells

MVBs :

Multivesicular bodies

MYCN :

v-myc myelocytomatosis viral-related oncogene, neuroblastoma-derived

NEDD4:

Neuronal precursor cell-expressed developmentally downregulated 4

NF-κB:

Nuclear factor-kappa B

NK :

Natural killer

PCR:

Polymerase chain reaction

PNTs :

Peripheral neuroblastic tumors

RNA :

Ribonucleic acid

TERF1:

Telomeric repeat-binding factor 1

TGFβ 1:

Transforming growth factor beta 1

TGFβR1:

Transforming growth factor beta receptor 1

TGFβR2:

Transforming growth factor beta receptor 2

TLR8 :

Toll-like receptor 8

References

  1. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312. https://doi.org/10.1016/j.scr.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  2. Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA et al (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180(11):1122–1130. https://doi.org/10.1164/rccm.200902-0242OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baker DL, Schmidt ML, Cohn SL, Maris JM, London WB, Buxton A et al (2010) Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N Engl J Med 363(14):1313–1323. https://doi.org/10.1056/NEJMoa1001527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38. https://doi.org/10.1152/ajpcell.00084.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12(12):1659–1668. https://doi.org/10.1111/j.1600-0854.2011.01225.x

    Article  CAS  PubMed  Google Scholar 

  6. Brummer A, Hausser J (2014) MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. BioEssays 36(6):617–626. https://doi.org/10.1002/bies.201300104

    Article  CAS  PubMed  Google Scholar 

  7. Challagundla KB, Wise PM, Neviani P, Chava H, Murtadha M, Xu T et al (2015) Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst 107(7). https://doi.org/10.1093/jnci/djv135

  8. Chava S, Reynolds CP, Pathania AS, Gorantla S, Poluektova LY, Coulter DW et al (2020) miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol 14(1):180–196. https://doi.org/10.1002/1878-0261.12588

    Article  CAS  PubMed  Google Scholar 

  9. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM et al (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27(2):289–297. https://doi.org/10.1200/JCO.2008.16.6785

    Article  PubMed  PubMed Central  Google Scholar 

  10. Colletti M, Petretto A, Galardi A, Di Paolo V, Tomao L, Lavarello C et al (2017) Proteomic analysis of neuroblastoma-derived exosomes: new insights into a metastatic signature. Proteomics 17(23–24). https://doi.org/10.1002/pmic.201600430

  11. Colon NC, Chung DH (2011) Neuroblastoma. Adv Pediatr Infect Dis 58(1):297–311. https://doi.org/10.1016/j.yapd.2011.03.011

    Article  Google Scholar 

  12. Daudigeos-Dubus E, Led L, Rouffiac V, Bawa O, Leguerney I, Opolon P et al (2014) Establishment and characterization of new orthotopic and metastatic neuroblastoma models. In Vivo 28(4):425–434

    CAS  PubMed  Google Scholar 

  13. Dorronsoro A, Robbins PD (2013) Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 4(2):39. https://doi.org/10.1186/scrt187

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fonseka P, Liem M, Ozcitti C, Adda CG, Ang CS, Mathivanan S (2019) Exosomes from N-Myc amplified neuroblastoma cells induce migration and confer chemoresistance to non-N-Myc amplified cells: implications of intra-tumour heterogeneity. J Extracell Vesicles 8(1):1597614. https://doi.org/10.1080/20013078.2019.1597614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799

    Article  CAS  PubMed  Google Scholar 

  16. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208. https://doi.org/10.1007/s00018-017-2595-9

    Article  CAS  PubMed  Google Scholar 

  17. Huang M, Weiss WA (2013) Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 3(10):a014415. https://doi.org/10.1101/cshperspect.a014415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalani A, Tyagi N (2015) Exosomes in neurological disease, neuroprotection, repair and therapeutics: problems and perspectives. Neural Regen Res 10(10):1565–1567. https://doi.org/10.4103/1673-5374.165305

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222. https://doi.org/10.1016/j.scr.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  20. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611. https://doi.org/10.1161/CIRCULATIONAHA.112.114173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Legler JM, Ries LA, Smith MA, Warren JL, Heineman EF, Kaplan RS et al (1999) Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 91(16):1382–1390. https://doi.org/10.1093/jnci/91.16.1382

    Article  CAS  PubMed  Google Scholar 

  22. London WB, Castleberry RP, Matthay KK, Look AT, Seeger RC, Shimada H et al (2005) Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J Clin Oncol 23(27):6459–6465. https://doi.org/10.1200/JCO.2005.05.571

    Article  CAS  PubMed  Google Scholar 

  23. Ma J, Xu M, Yin M, Hong J, Chen H, Gao Y et al (2019) Exosomal hsa-miR199a-3p promotes proliferation and migration in neuroblastoma. Front Oncol 9:459. https://doi.org/10.3389/fonc.2019.00459

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188. https://doi.org/10.1016/j.tcb.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  25. Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B (2018) Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol 6:18. https://doi.org/10.3389/fcell.2018.00018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362(23):2202–2211. https://doi.org/10.1056/NEJMra0804577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakata R, Shimada H, Fernandez GE, Fanter R, Fabbri M, Malvar J et al (2017) Contribution of neuroblastoma-derived exosomes to the production of pro-tumorigenic signals by bone marrow mesenchymal stromal cells. J Extracell Vesicles. 6(1):1332941. https://doi.org/10.1080/20013078.2017.1332941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY et al (2019) Natural killer-derived Exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Res 79(6):1151–1164. https://doi.org/10.1158/0008-5472.CAN-18-0779

    Article  CAS  PubMed  Google Scholar 

  29. Park JR, Eggert A, Caron H (2008) Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin N Am 55(1):97–120, x. https://doi.org/10.1016/j.pcl.2007.10.014

    Article  Google Scholar 

  30. Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF et al (2015) Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol 33(27):3008–3017. https://doi.org/10.1200/JCO.2014.59.4648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmidt O, Teis D (2012) The ESCRT machinery. Curr Biol 22(4):R116–R120. https://doi.org/10.1016/j.cub.2012.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seeger RC (2011) Immunology and immunotherapy of neuroblastoma. Semin Cancer Biol 21(4):229–237. https://doi.org/10.1016/j.semcancer.2011.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Speleman F, Park JR, Henderson TO (2016) Neuroblastoma: a tough nut to crack. Am Soc Clin Oncol Educ Book 35:e548–e557. https://doi.org/10.14694/EDBK_159169. https://doi.org/10.1200/EDBK_159169

    Article  PubMed  Google Scholar 

  35. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234. https://doi.org/10.1038/nrd1984

    Article  CAS  PubMed  Google Scholar 

  36. Willis GR, Kourembanas S, Mitsialis SA (2017) Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Front Cardiovasc Med 4:63. https://doi.org/10.3389/fcvm.2017.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564. https://doi.org/10.1002/stem.1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, Chen HX et al (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363(14):1324–1334. https://doi.org/10.1056/NEJMoa0911123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang G, Wang D, Miao S, Zou X, Liu G, Zhu Y (2016) Extracellular vesicles derived from mesenchymal stromal cells may possess increased therapeutic potential for acute kidney injury compared with conditioned medium in rodent models: A meta-analysis. Exp Ther Med 11(4):1519–1525. https://doi.org/10.3892/etm.2016.3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A et al (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122(4):856–867. https://doi.org/10.3171/2014.11.JNS14770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19. https://doi.org/10.1186/s13578-019-0282-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Challagundla’s laboratory is supported in whole or part from the NIH/NCI grant (K22CA197074-01); Leukemia Research Foundation (LRF) grant, the Nebraska State DHHS (LB506); UNMC Pediatric Cancer Research Center; Fred and Pamela Buffett Cancer Center’s pilot grant (P30 CA036727) in conjunction with the UNMC Pediatric Cancer Research Center; and the Department of Biochemistry and Molecular Biology start-up. Heather Richard and Arya Pokhrel are thankful to Terri L. Gulick, Jaynie E. Bird, Michele Merrill, and Heidi N. Kaschke and acknowledge the support of the UNMC High School Alliance Health Sciences Enrichment Program.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore B. Challagundla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Richard, H., Pokhrel, A., Chava, S., Pathania, A., Katta, S.S., Challagundla, K.B. (2020). Exosomes: Novel Players of Therapy Resistance in Neuroblastoma. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-50224-9_5

Download citation

Publish with us

Policies and ethics