Skip to main content

FingerTac – A Wearable Tactile Thimble for Mobile Haptic Augmented Reality Applications

  • Conference paper
  • First Online:
Book cover Virtual, Augmented and Mixed Reality. Design and Interaction (HCII 2020)

Abstract

FingerTac is a novel concept for a wearable augmented haptic thimble. It makes use of the limited spatial discrimination capabilities of vibrotactile stimuli at the skin and generates tactile feedback perceived at the bottom center of a fingertip by applying simultaneous vibrations at both sides of the finger. Since the bottom of the finger is thus kept free of obstruction, the device is well promising for augmented haptic applications, where real world interactions need to be enriched or amalgamated with virtual tactile feedback. To minimize its lateral dimension, the vibration actuators are placed on top of the device, and mechanical links transmit the vibrations to the skin. Two evaluation studies with N=10 participants investigate (i) the loss of vibration intensity through these mechanical links, and (ii) the effect of lateral displacement between stimulus and induced vibration. The results of both studies support the introduced concept of the FingerTac.

Funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence Strategy – EXC 2050/1 – Project ID 390696704 – Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Universität Dresden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Culbertson, H., Nunez, C.M., Israr, A., Lau, F., Abnousi, F., Okamura, A.M.: A social haptic device to create continuous lateral motion using sequential normal indentation. In: IEEE Haptics Symposium, pp. 32–39 (2018)

    Google Scholar 

  2. De Rossi, D., Carpi, F., Carbonaro, N., Tognetti, A., Scilingo, E.P.: Electroactive polymer patches for wearable haptic interfaces. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 8369–8372 (2011)

    Google Scholar 

  3. van Erp, J.B., van Veen, H.A.: A multi-purpose tactile vest for astronauts in the international space station. In: EuroHaptics, pp. 405–408. ACM Press, Dublin (2003)

    Google Scholar 

  4. Fani, S., Ciotti, S., Battaglia, E., Moscatelli, A., Bianchi, M.: W-FYD: a wearable fabric-based display for haptic multi-cue delivery and tactile augmented reality. IEEE Trans. Haptics 11(2), 304–316 (2017)

    Article  Google Scholar 

  5. Gabardi, M., Solazzi, M., Leonardis, D., Frisoli, A.: A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In: IEEE Haptics Symposium, pp. 140–146 (2016)

    Google Scholar 

  6. Gemperle, F., Ota, N., Siewiorek, D.: Design of a wearable tactile display. In: IEEE International Symposium on Wearable Computers, pp. 5–12 (2001)

    Google Scholar 

  7. Inoue, S., Makino, Y., Shinoda, H.: Active touch perception produced by airborne ultrasonic haptic hologram. In: IEEE World Haptics Conference (WHC), pp. 362–367 (2015)

    Google Scholar 

  8. Jones, L.A., Sarter, N.B.: Tactile displays: guidance for their design and application. Hum. Fac. 50(1), 90–111 (2008)

    Article  Google Scholar 

  9. Komurasaki, S., Kajimoto, H., Ishizuka, H.: Fundamental perceptual characterization of an integrated tactile display with electrovibration and electrical stimuli. Micromachines 10(5), 301 (2019)

    Article  Google Scholar 

  10. Leonardis, D., Solazzi, M., Bortone, I., Frisoli, A.: A 3-rsr haptic wearable device for rendering fingertip contact forces. IEEE Trans. Haptics 10(3), 305–316 (2016)

    Article  Google Scholar 

  11. Long, B., Seah, S.A., Carter, T., Subramanian, S.: Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans. Graph. (TOG) 33(6), 1–10 (2014)

    Article  Google Scholar 

  12. Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., Tachi, S.: Gravity grabber: wearable haptic display to present virtual mass sensation. In: ACM SIGGRAPH Computer Graphics (2007)

    Google Scholar 

  13. Moy, G., Wagner, C., Fearing, R.S.: A compliant tactile display for teletaction. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 4, pp. 3409–3415 (2000)

    Google Scholar 

  14. Mun, S., et al.: Electro-active polymer based soft tactile interface for wearable devices. IEEE Trans. Haptics 11(1), 15–21 (2018)

    Article  Google Scholar 

  15. Nara, T., Takasaki, M., Tachi, S., Higuchi, T.: An application of saw to a tactile display in virtual reality. IEEE Ultrason. Symp. 1, 1–4 (2000)

    Google Scholar 

  16. Pacchierotti, C., Salvietti, G., Hussain, I., Meli, L., Prattichizzo, D.: The hRing: A wearable haptic device to avoid occlusions in hand tracking. In: IEEE Haptics Symposium, pp. 134–139. IEEE (2016)

    Google Scholar 

  17. Prattichizzo, D., Chinello, F., Pacchierotti, C., Malvezzi, M.: Towards wearability in fingertip haptics: a 3-dof wearable device for cutaneous force feedback. IEEE Trans. Haptics 6(4), 506–516 (2013)

    Article  Google Scholar 

  18. Schätzle, S., Ende, T., Wuesthoff, T., Preusche, C.: VibroTac: an ergonomic and versatile usable vibrotactile feedback device. In: IEEE International Symposium in Robot and Human Interactive Communication (Ro-Man), Viareggio, Italy, pp. 705–710 (2010)

    Google Scholar 

  19. Schätzle, S., Hulin, T., Pleintinger, B.: VibroTac S: an electronic assistive device for blind and visually impaired people to avoid collisions. In: Ahram, T., Karwowski, W., Taiar, R. (eds.) IHSED 2018. AISC, vol. 876, pp. 613–619. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02053-8_94

    Chapter  Google Scholar 

  20. Scheibe, R., Moehring, M., Froehlich, B.: Tactile feedback at the finger tips for improved direct interaction in immersive environments. In: IEEE Symposium on 3D User Interfaces (3DUI) (2007)

    Google Scholar 

  21. Schorr, S.B., Okamura, A.M.: Fingertip tactile devices for virtual object manipulation and exploration. In: CHI Conference on Human Factors in Computing Systems, pp. 3115–3119 (2017)

    Google Scholar 

  22. Singh, H., Suthar, B., Mehdi, S.Z., Ryu, J.H.: Ferro-fluid based portable fingertip haptic display and its preliminary experimental evaluation. In: IEEE Haptics Symposium, pp. 14–19 (2018)

    Google Scholar 

  23. Solazzi, M., Frisoli, A., Bergamasco, M.: Design of a cutaneous fingertip display for improving haptic exploration of virtual objects. In: International Symposium in Robot and Human Interactive Communication, pp. 1–6. IEEE (2010)

    Google Scholar 

  24. Spelmezan, D., González, R.M., Subramanian, S.: Skinhaptics: ultrasound focused in the hand creates tactile sensations. In: IEEE Haptics Symposium, pp. 98–105 (2016)

    Google Scholar 

  25. Tsukada, K., Yasumura, M.: ActiveBelt: belt-type wearable tactile display for directional navigation. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 384–399. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30119-6_23

    Chapter  Google Scholar 

  26. Velázquez, R., Pissaloux, E.E., Wiertlewski, M.: A compact tactile display for the blind with shape memory alloys. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3905–3910 (2006)

    Google Scholar 

  27. Yang, G.H., Kyung, K.U., Srinivasan, M.A., Kwon, D.S.: Quantitative tactile display device with pin-array type tactile feedback and thermal feedback. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3917–3922 (2006)

    Google Scholar 

  28. Yang, T.H., Kim, S.Y., Kim, C.H., Kwon, D.S., Book, W.J.: Development of a miniature pin-array tactile module using elastic and electromagnetic force for mobile devices. In: IEEE World Haptics Conference (WHC), pp. 13–17 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hulin, T. et al. (2020). FingerTac – A Wearable Tactile Thimble for Mobile Haptic Augmented Reality Applications. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. Design and Interaction. HCII 2020. Lecture Notes in Computer Science(), vol 12190. Springer, Cham. https://doi.org/10.1007/978-3-030-49695-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49695-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49694-4

  • Online ISBN: 978-3-030-49695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics