Skip to main content

Conservative Model Order Reduction for Fluid Flow

  • Chapter
  • First Online:
Quantification of Uncertainty: Improving Efficiency and Technology

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 137 ))

Abstract

In the past decade, model order reduction (MOR) has been successful in reducing the computational complexity of elliptic and parabolic systems of partial differential equations (PDEs). However, MOR of hyperbolic equations remains a challenge. Symmetries and conservation laws, which are a distinctive feature of such systems, are often destroyed by conventional MOR techniques which result in a perturbed, and often unstable reduced system. The importance of conservation of energy is well-known for a correct numerical integration of fluid flow. In this paper, we discuss model reduction, that exploits skew-symmetry of conservative and centered discretization schemes, to recover conservation of energy at the level of the reduced system. Moreover, we argue that the reduced system, constructed with the new method, can be identified by a reduced energy that mimics the energy of the high-fidelity system. Therefore, the loss in energy, associated with the model reduction, remains constant in time. This results in an, overall, correct evolution of the fluid that ensures robustness of the reduced system. We evaluate the performance of the proposed method through numerical simulation of various fluid flows, and through a numerical simulation of a continuous variable resonance combustor model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136–1161 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Barone, M.F., Kalashnikova, I., Segalman, D.J., Thornquist, H.K.: Stable Galerkin reduced order models for linearized compressible flow. J. Comput. Phys. 228(6), 1932–1946 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian systems. In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 6564–6569. IEEE (2011)

    Google Scholar 

  4. Benner, P., Breiten, T.: Interpolation-based \(\mathscr H_2\)-model reduction of bilinear control systems. SIAM J. Matrix Anal. Appl. 33(3), 859–885 (2012)

    Google Scholar 

  5. Benner, P., Goyal, P.: An Iterative Model Reduction Scheme for Quadratic-Bilinear Descriptor Systems with an Application to Navier–Stokes Equations, pp. 1–19. Springer, Cham, (2018)

    Google Scholar 

  6. Blaisdell, G.A.: Numerical simulations of compressible homogeneous turbulence. Ph.D. thesis, Stanford University (1991)

    Google Scholar 

  7. Carlberg, K., Choi, Y., Sargsyan, S.: Conservative model reduction for finite-volume models. J. Comput. Phys. 371, 280–314 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Carlberg, K., Tuminaro, R., Boggs, P.: Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM J. Sci. Comput. 37(2), B153–B184 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Courier Corporation, Chelmsford (2013)

    MATH  Google Scholar 

  10. Chaturantabut, S., Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian systems. SIAM J. Sci. Comput. 38(5), B837–B865 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227(15), 7125–7159 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Dritschel, D.G., Zabusky, N.J.: On the nature of vortex interactions and models in unforced nearly inviscid two dimensional turbulence. Phys. Fluids 8(5), 1252–1256 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Edsberg, L.: Introduction to Computation and Modeling for Differential Equations. Wiley-Interscience, New York (2008)

    MATH  Google Scholar 

  14. Farhat, C., Chapman, T., Avery, P.: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Methods Eng. 102(5), 1077–1110 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Frezzotti, M.L., Nasuti, F., Huang, C., Merkle, C.L., Anderson, W.E.: Quasi-1D modeling of heat release for the study of longitudinal combustion instability. Aerosp. Sci. Technol. 75, 261–270 (2018)

    Google Scholar 

  16. Frezzotti, M.L., D’Alessandro, S., Favini, B., Nasuti, F.: Numerical issues in modeling combustion instability by quasi-1D Euler equations. Int. J. Spray Combust. Dyn. 9(4), 349–366 (2017)

    Google Scholar 

  17. Frezzotti, M.L., Nasuti, F., Huang, C., Merkle, C., Anderson, W.E.: Determination of heat release response function from 2D hybrid RANS-LES data for the CVRC combustor. In: 51st AIAA/SAE/ASEE Joint Propulsion Conference, p. 3841 (2015)

    Google Scholar 

  18. Garby, R.: Simulations of flame stabilization and stability in high-pressure propulsion systems. Ph.D. thesis, INPT (2013)

    Google Scholar 

  19. Gugercin, S., Polyuga, R.V., Beattie, C., Van Der Schaft, A.: Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48(9), 1963–1974 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Haasdonk, B.: Convergence rates of the POD-Greedy method. ESAIM: Math. Model. Numer. Anal. 47(3), 859–873 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  22. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Berlin (2015)

    Google Scholar 

  23. Honein, A.E., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201(2), 531–545 (2004)

    MATH  Google Scholar 

  24. Honein, A.E.: Numerical aspects of compressible turbulence simulations (2005)

    Google Scholar 

  25. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Kalashnikova, I., van Bloemen Waanders, B., Arunajatesan, S., Barone, M.: Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment. Comput. Methods Appl. Mech. Eng. 272, 251–270 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Kevlahan, N.K.R., Farge, M.: Vorticity filaments in two-dimensional turbulence: creation, stability and effect. J. Fluid Mech. 346, 49–76 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Maboudi Afkham, B., Hesthaven, J.S.: Structure preserving model reduction of parametric Hamiltonian systems. SIAM J. Sci. Comput. 39(6), A2616–A2644 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Maboudi Afkham, B., Hesthaven, J.S.: Structure-preserving model-reduction of dissipative Hamiltonian systems. J. Sci. Comput. 81(1), 3–21 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows. J. Comput. Phys. 229(2), 276–300 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143(1), 90–124 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Morinishi, Y., Tamano, S., Nakabayashi, K.: A DNS algorithm using B-spline collocation method for compressible turbulent channel flow. Comput. Fluids 32(5), 751–776 (2003)

    MATH  Google Scholar 

  33. Peng, L., Mohseni, K.: Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38(1), A1–A27 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction. UNITEXT. Springer, Berlin (2015)

    Google Scholar 

  35. Reiss, J., Sesterhenn, J.: A conservative, skew-symmetric finite difference scheme for the compressible Navier–Stokes equations. Comput. Fluids 101, 208–219 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Sjögreen, B., Yee, H.C.: On skew-symmetric splitting and entropy conservation schemes for the Euler equations. In: Numerical Mathematics and Advanced Applications 2009, pp. 817–827. Springer, Berlin (2010)

    Google Scholar 

  37. Smith, R., Ellis, M., Xia, G., Sankaran, V., Anderson, W., Merkle, C.L.: Computational investigation of acoustics and instabilities in a longitudinal-mode rocket combustor. AIAA J. 46(11), 2659–2673 (2008)

    Google Scholar 

  38. Tadmor, E.: Skew-selfadjoint form for systems of conservation laws. J. Math. Anal. Appl. 103(2), 428–442 (1984)

    MathSciNet  MATH  Google Scholar 

  39. Thompson, W.J.: Fourier series and the Gibbs phenomenon. Am. J. Phys. 60(5), 425–429 (1992)

    Google Scholar 

  40. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM (1997)

    Google Scholar 

  41. Wang, Q., Hesthaven, J.S., Ray, D.: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J. Comput. Phys. 384, 289–307 (2019)

    MathSciNet  Google Scholar 

  42. Yu, J., Hesthaven, J.S.: A Comparative Study of Shock Capturing Models for the Discontinuous Galerkin Method. No. EPFL-ARTICLE-231188. Elsevier, Amsterdam (2017)

    Google Scholar 

  43. Yu, Y., Koeglmeier, S., Sisco, J., Anderson, W.: Combustion instability of gaseous fuels in a continuously variable resonance chamber (CVRC). In: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, p. 4657 (2008)

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by AFOSR under grant FA9550-17-1-9241 and by SNSF under the grant number P1ELP2-175039. We also thank prof. Karen E. Willcox who provided insight and expertise that greatly assisted this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Maboudi Afkham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 National Technology & Engineering Solutions of Sandia, and The Editor(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afkham, B.M., Ripamonti, N., Wang, Q., Hesthaven, J.S. (2020). Conservative Model Order Reduction for Fluid Flow. In: D'Elia, M., Gunzburger, M., Rozza, G. (eds) Quantification of Uncertainty: Improving Efficiency and Technology. Lecture Notes in Computational Science and Engineering, vol 137 . Springer, Cham. https://doi.org/10.1007/978-3-030-48721-8_4

Download citation

Publish with us

Policies and ethics