Skip to main content

A Scalable Unsupervised Framework for Comparing Graph Embeddings

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12091))

Included in the following conference series:

Abstract

Graph embedding is a transformation of vertices of a graph into a set of vectors. A good embedding should capture the graph topology, vertex-to-vertex relationship, and other relevant information about the graph, its subgraphs, and vertices. If these objectives are achieved, an embedding is a meaningful, understandable, and often compressed representations of a network. Unfortunately, selecting the best embedding is a challenging task and very often requires domain experts.

In the recent paper [1], we propose a “divergence score” that can be assigned to embeddings to help distinguish good ones from bad ones. This general framework provides a tool for an unsupervised graph embedding comparison. The complexity of the original algorithm was quadratic in the number of vertices. It was enough to show that the proposed method is feasible and has practical potential (proof-of-concept). In this paper, we improve the complexity of the original framework and design a scalable approximation algorithm. Moreover, we perform some detailed quality and speed benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ftheberge/Comparing_Graph_Embeddings.

References

  1. Kamiński, B., Prałat, P., Théberge, F.: An unsupervised framework for comparing graph embeddings. J. Complex Networks, in press. 27 p

    Google Scholar 

  2. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  3. Bianconi, G.: Interdisciplinary and physics challenges of network theory. EPL 111(5), 56001 (2015)

    Article  Google Scholar 

  4. Janssen, J.: Spatial models for virtual networks. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 201–210. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13962-8_23

    Chapter  Google Scholar 

  5. Poulin, V., Théberge, F.: Ensemble clustering for graphs. In: Aiello, L.M., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L.M. (eds.) COMPLEX NETWORKS 2018. SCI, vol. 812, pp. 231–243. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05411-3_19

    Chapter  Google Scholar 

  6. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Article  Google Scholar 

  7. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. pre-print arXiv:1802.03426 (2018)

  8. Chung, F.R.K., Lu, L.: Complex Graphs and Networks. American Mathematical Society, Boston (2006)

    Book  Google Scholar 

  9. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  10. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection. http://snap.stanford.edu/data

  11. Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection (ABCD) – fast random graph model with community structure, pre-print arXiv:2002.00843 (2020)

  12. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  13. Kamiński, B., Poulin, V., Prałat, P., Szufel, P., Théberge, F.: Clustering via Hypergraph Modularity. PLoS ONE 14(11), e0224307 (2019)

    Article  Google Scholar 

  14. Antelmi, A., et al.: Analyzing, exploring, and visualizing complex networks via hypergraphs using SimpleHypergraphs.jl. Internet Math. (2020). 32 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Théberge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Crown

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamiński, B., Prałat, P., Théberge, F. (2020). A Scalable Unsupervised Framework for Comparing Graph Embeddings. In: Kamiński, B., Prałat, P., Szufel, P. (eds) Algorithms and Models for the Web Graph. WAW 2020. Lecture Notes in Computer Science(), vol 12091. Springer, Cham. https://doi.org/10.1007/978-3-030-48478-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48478-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48477-4

  • Online ISBN: 978-3-030-48478-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics