Skip to main content

Soil Salinity and Its Alleviation Using Plant Growth–Promoting Fungi

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The versatility of plant growth–promoting fungi (PGPF) and their association with plants have been confirmed as enormously valuable to plants in saline stress. Fungal genera such as Aspergillus, Fusarium, Penicillium, Piriformospora, Phoma, and Trichoderma are the most frequently reported PGPF used in situations of abiotic stress. PGPF–plant interactions have positive effects on belowground and aboveground plant organs, resulting in substantial augmentations in germination of seed, seedling vigor, biomass production, root hairs, photosynthetic efficiency, flowering, and productivity being observed in salinity stress. Several strains have the capabilities to improve biochemical composition and also control numerous foliar and root pathogens by triggering induced systemic resistance in host plants. These proficiencies are determined by the ability to enhance uptake of nutrients and production of phytohormones, as well as reprogramming plant gene expression, through differential activation of plant signaling pathways. Moreover, interactions of arbuscular mycorrhizal fungi (AMF) with phytohormones such as strigolactones, abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid have been associated with salt tolerance mechanisms. This chapter systematically discusses major advances in research on physiological, biochemical, and molecular mechanisms involved in AMF-induced salt stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169(7):704–709

    CAS  PubMed  Google Scholar 

  • Abdel-Fattah GM, Rabie GH, Lamis DS, Rabab AM (2016) The impact of the arbuscular mycorrhizal fungi on growth and physiological parameters of cowpea plants grown under salt stress conditions. Int J Appl Sci Biotechnol 4(3):372–379

    CAS  Google Scholar 

  • Abdelhamid MT, El-Masry RR, Darwish DS, Abdalla MM, Oba S, Ragab R (2019) The mechanisms involved in improving the tolerance of plants to salt stress using arbuscular mycorrhizal fungi. In: Microorganisms in saline environments: strategies and functions. Springer, Cham, pp 303–327

    Google Scholar 

  • Acosta JA, Faz A, Jansen B, Kalbitz K, Martínez-Martínez S (2011) Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. J Arid Environ 75(11):1056–1066

    Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Google Scholar 

  • Al Hassan M, Pacurar A, López-Gresa MP, Donat-Torres MP, Llinares JV, Boscaiu M, Vicente O (2016) Effects of salt stress on three ecologically distinct Plantago species. PLoS One 11(8):e0160236

    PubMed  PubMed Central  Google Scholar 

  • Al-Amri SM, Elhindi KM, El-Din AFS (2016) Effects of arbuscular mycorrhizal fungus Glomus mosseae and phosphorus application on plant growth rate, essential oil content and composition of coriander (Coriander sativum L.). Prog Nutr 18(4):443–454

    Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10(2):51–54

    CAS  Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149(1):549–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Gen Mol Biol 40(1):326–345

    CAS  Google Scholar 

  • Alqarawi AA, Abd Allah EF, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9(1):802–810

    Google Scholar 

  • Andrade SA, Gratão PL, Schiavinato MA, Silveira AP, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75(10):1363–1370

    CAS  PubMed  Google Scholar 

  • Annunziata MG, Ciarmiello LF, Woodrow P, Dell’Aversana E, Carillo P (2019) Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Front Plant Sci 10:230

    PubMed  PubMed Central  Google Scholar 

  • Antoniadis V, Koutroubas SD, Fotiadis S (2015) Nitrogen, phosphorus, and potassium availability in manure- and sewage sludge–applied soil. Commun Soil Sci Plant Anal 46(3):393–404

    CAS  Google Scholar 

  • Arbona V, Manzi M, Ollas CD, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14(3):4885–4911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora S, Sahni D (2019) Halophilic microbe interactions with plants to mitigate salt stress. In: Akhtar M (ed) Salt stress, microbes, and plant interactions: causes and solution. Springer, Singapore

    Google Scholar 

  • Ashraf MPJC, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    CAS  Google Scholar 

  • Ashraf MA, Ashraf M, Shahbaz M (2012) Growth stage–based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora-Morphol Distrib Funct Ecol Plants 207(5):388–397

    Google Scholar 

  • Ashrafi E, Zahedi M, Razmjoo J (2014) Co-inoculations of arbuscular mycorrhizal fungi and rhizobia under salinity in alfalfa. Soil Sci Plant Nutr 60(5):619–629

    CAS  Google Scholar 

  • Asmelash F, Bekele T, Birhane E (2016) The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol 7:1095

    PubMed  PubMed Central  Google Scholar 

  • Atieno J, Li Y, Langridge P, Dowling K, Brien C, Berger B, Sutton T (2017) Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Rep 7(1):1300

    PubMed  PubMed Central  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2014) Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front Plant Sci 5:562

    PubMed  PubMed Central  Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2016) Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: a quantitative analysis of the literature using meta-regression. Front Plant Sci 7:1084

    PubMed  PubMed Central  Google Scholar 

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9(1):484–505

    CAS  PubMed  Google Scholar 

  • Azcón R, Ambrosano E, Charest C (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci 165(5):1137–1145

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (2015) Nutrient cycling in the mycorrhizosphere. J Soil Sci Plant Nutr 15(2):372–396

    Google Scholar 

  • Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q, Feng H (2019) Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int J Mol Sci 20(17):4199

    PubMed Central  Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton–plasma membrane–cell wall continuum in plants. Emerging links revisited. Plant Physiol 133(2):482–491

    PubMed  PubMed Central  Google Scholar 

  • Banjara M, Zhu L, Shen G, Payton P, Zhang H (2012) Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6(1):59–67

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    CAS  PubMed  Google Scholar 

  • Barsainya M, Chandra P, Singh D P (2016) Investigation of Cr (VI) uptake in saline condition using psychrophilic and mesophilic Penicillium sp. Int J Curr Microbiol Appl Sci 5:274–288

    Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant-Microbe Interact 27(4):349–363

    PubMed  Google Scholar 

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63(16):5727–5740

    CAS  PubMed  Google Scholar 

  • Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Scientia Hortic 187:131–141

    Google Scholar 

  • Becerra AG, Cofré MN, García I (2019) Arbuscular mycorrhizal symbiosis in salt-tolerance species and halophytes growing in salt-affected soils of South America. In: Mycorrhizal fungi in South America. Springer, Cham, pp 295–314

    Google Scholar 

  • Beckles DM, Thitisaksakul M (2014) How environmental stress affects starch composition and functionality in cereal endosperm. Starch-Stärke 66(1–2):58–71

    CAS  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    CAS  PubMed  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. J Soil Sci Plant Nutr 13(1):123–141

    Google Scholar 

  • Bencherif K, Dalpé Y, Hadj-Sahraoui AL (2019a) Arbuscular mycorrhizal fungi alleviate soil salinity stress in arid and semiarid areas. In: Microorganisms in saline environments: strategies and functions. Springer, Cham, pp 375–400

    Google Scholar 

  • Bencherif K, Dalpé Y, Sahraoui ALH (2019b) Influence of native arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Tamarix shrubs under different salinity levels. In: Microorganisms in saline environments: strategies and functions. Springer, Cham, pp 265–283

    Google Scholar 

  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171(9):723–731

    CAS  PubMed  Google Scholar 

  • Bernstein L, Hayward HE (1958) Physiology of salt tolerance. Ann Rev Plant Physiol 9(1):25–46

    CAS  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    PubMed  PubMed Central  Google Scholar 

  • Berruti A, Demasi S, Lumini E, Kobayashi N, Scariot V, Bianciotto V (2017) Wild Camellia japonica specimens in the Shimane Prefecture (Japan) host previously undescribed AMF diversity. Appl Soil Ecol 115:10–18

    Google Scholar 

  • Besharati H, Aliasgharzad N, Khavazi K, Rahmani HA (2018) Soil biology and biotechnology. In: The soils of Iran. Springer, Cham, pp 189–211

    Google Scholar 

  • Bhandari P, Garg N (2017) Arbuscular mycorrhizal symbiosis: a promising approach for imparting abiotic stress tolerance in crop plants. In: Plant–microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 377–402

    Google Scholar 

  • Bhattacharjya S, Bhaduri D, Sahu A (2018) Arbuscular mycorrhizal fungi: a potential tool for enhancing crop productivity in salt affected soil. Int J Agric Env Biotechnol 11(6):871–880

    Google Scholar 

  • Bhattacharyya PN, Goswami MP, Bhattacharyya LH (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytology 8:26–41

    Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bitterlich M, Franken P, Graefe J (2018) Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Front Plant Sci 9:301

    PubMed  PubMed Central  Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40(1):4–10

    CAS  PubMed  Google Scholar 

  • Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Berta G (2017) Arbuscular mycorrhizal fungi and plant growth–promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27(1):1–11

    CAS  PubMed  Google Scholar 

  • Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Env 566:1223–1234

    Google Scholar 

  • Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5(4):587–612

    Google Scholar 

  • Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Sci 4:108–132

    Google Scholar 

  • Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283(12):7309–7313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168(4):521–530

    CAS  Google Scholar 

  • Cardoso Filho JA (2019) Production and application of novel bio-active compounds by endophytic microbes. In: Natural bio-active compounds. Springer, Singapore, pp 1–40

    Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. Abiotic Stress Plant Mech Adapt 1:21–38

    Google Scholar 

  • Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    CAS  PubMed  Google Scholar 

  • Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Brun A (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23(8):597–625

    CAS  PubMed  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304(1–2):315–325

    CAS  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chagas FO, de Cassia PR, Caraballo-Rodríguez AM, Pupo MT (2018) Chemical signaling involved in plant–microbe interactions. Chem Soc Rev 47(5):1652–1704

    CAS  PubMed  Google Scholar 

  • Chandra P, Singh DP (2014) Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from sāmbhar salt lake Rajastha (India). Cell Mol Biol 60(5): 64–72

    Google Scholar 

  • Chandra P, Enespa (2019a) Mycoremediation of environmental pollutants from contaminated soil. In Mycorrhizosphere and Pedogenesis (pp 239–274). Springer, Singapore

    Google Scholar 

  • Chandra P, Enespa (2019b) Soil–Microbes–Plants: interactions and ecological diversity. In plant microbe interface (pp 145–176). Springer, Cham

    Google Scholar 

  • Chandra P, Enespa (2019c) Fungal enzymes for bioremediation of contaminated soil. In Recent advancement in white biotechnology through fungi (pp 189–215). Springer, Cham

    Google Scholar 

  • Chandra P, Enespa, Kumar M (2020) Contribution of microbes in the renovation of wetlands. In: Upadhyay A, Singh R, Singh D (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Singapore

    Google Scholar 

  • Chandra P, Singh E (2016) Applications and mechanisms of plant growth–stimulating rhizobacteria. In: Choudhary D, Varma A, Tuteja N (eds) Plant–microbe interaction: an approach to sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T (2019) Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress—a meta-analysis. Front Plant Sci 10:457

    PubMed  PubMed Central  Google Scholar 

  • Chang W, Sui X, Fan XX, Jia TT, Song FQ (2018) Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front Microbiol 9:652

    PubMed  PubMed Central  Google Scholar 

  • Chao-Yin DOU, Yao-Hu KANG, Shu-Qin WAN, Wei HU (2011) Soil salinity changes under cropping with Lycium barbarum L. and irrigation with saline–sodic water. Pedosphere 21(4):539–548

    Google Scholar 

  • Chartzoulakis KS (2005) Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric Water Manag 78(1–2):108–121

    Google Scholar 

  • Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Hortic 86(3):247–260

    CAS  Google Scholar 

  • Chen S, Li J, Fritz E, Wang S, Hüttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. Forest Ecol Manag 168(1–3):217–230

    Google Scholar 

  • Chen W, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc Nat Acad Sci 113(31):8741–8746

    CAS  PubMed  Google Scholar 

  • Chen J, Zhang H, Zhang X, Tang M (2017) Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Front Plant Sci 8:1739

    PubMed  PubMed Central  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi—from ecology to application. Front Plant Sci 9:1270

    PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35(1):276–300

    CAS  Google Scholar 

  • Chun SC, Chandrasekaran M (2018) Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol 9:2525

    PubMed  PubMed Central  Google Scholar 

  • Ciulla RA, Diaz MR, Taylor BF, Roberts MF (1997) Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment. Appl Environ Microbiol 63(1):220–226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson DT (1993) Roots and the delivery of solutes to the xylem. Phil Trans R Soc Lond Ser B 341(1295):5–17

    Google Scholar 

  • Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73(2):197–214

    CAS  PubMed  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RJ, Papendick RI (1972) Influence of water potential of soils and plants on root disease. Annu Rev Phytopathol 10(1):349–374

    Google Scholar 

  • Cosme M, Fernández I, Van der Heijden MG, Pieterse CM (2018) Non-mycorrhizal plants: the exceptions that prove the rule. Trend Plant Sci 23(7):577–587

    CAS  Google Scholar 

  • Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160(4):1710–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Agostino LA, Mabury SA (2013) Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ Sci Technol 48(1):121–129

    PubMed  Google Scholar 

  • Dagar JC (2016) Agroforestry: four decades of research development. Indian J Agrofor 18:1–32

    Google Scholar 

  • Daie J, Patrick JW (1988) Mechanism of drought-induced alterations in assimilates partitioning and transport in crops. Crit Rev Plant Sci 7(2):117–137

    CAS  Google Scholar 

  • de Bernonville TD, Guyot S, Paulin JP, Gaucher M, Loufrani L, Henrion D, Brisset MN (2010) Dihydrochalcones: implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry 71(4):443–452

    Google Scholar 

  • de Carvalho K, de Campos MKF, Domingues DS, Pereira LFP, Vieira LGE (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep 40(4):3269–3279

    CAS  PubMed  Google Scholar 

  • de Souza Moreira FM, Ferreira PAA, Vilela LAF, Carneiro MAC (2015) Symbioses of plants with rhizobia and mycorrhizal fungi in heavy metal-contaminated tropical soils. In: Heavy metal contamination of soils. Springer, Cham, pp 215–243

    Google Scholar 

  • Délano-Frier JP, Tejeda-Sartorius M (2008) Unraveling the network: novel developments in the understanding of signaling and nutrient exchange mechanisms in the arbuscular mycorrhizal symbiosis. Plant Signal Behav 3(11):936–944

    PubMed  PubMed Central  Google Scholar 

  • Delian E, Chira A, Chira L, Savulescu E (2011) Arbuscular mycorrhizae: an overview. S West J Hortiv Biol Environ 2:167–192

    Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    CAS  PubMed  Google Scholar 

  • Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370(1–2):149–161

    Google Scholar 

  • Ebrahim MKH, Saleem AR (2017) Alleviating salt stress in tomato inoculated with mycorrhizae: photosynthetic performance and enzymatic antioxidants. J Taibah Univ Sci 11(6):850–860

    Google Scholar 

  • Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34(1–2):67–78

    CAS  Google Scholar 

  • Eisa S, Hussin S, Geissler N, Koyro HW (2012) Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Aust J. Crop Sci 6(2):357

    CAS  Google Scholar 

  • Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24(1):170–179

    CAS  PubMed  Google Scholar 

  • Eltelib HA, Badejo AA, Fujikawa Y, Esaka M (2011) Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra). J P Physiol 168(6):619–627

    CAS  Google Scholar 

  • Enespa, Chandra P (2017) Microbial volatiles as chemical weapons against pathogenic fungi. In: Choudhary D, Sharma A, Agarwal P, Varma A, Tuteja N (eds) Volatiles and food security. Springer, Singapore, pp 227–254

    Google Scholar 

  • Enespa, Chandra P (2019) Fungal community for novel secondary metabolites. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Fungal biology. Springer, Cham, pp 249–283

    Google Scholar 

  • Enespa, Prakash J, Chandra P (2020) Halophilic microbes from plant growing under the hypersaline habitats and their application for plant growth and mitigation of salt stress. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant Microbiomes for Sustainable Agriculture. Springer, Cham, pp 317–349. https://doi.org/10.1007/978-3-030-38453-1_11

  • Estrada B, Aroca R, Azcón-Aguilar C, Barea JM, Ruiz-Lozano JM (2013a) Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant Soil 370(1–2):175–185

    CAS  Google Scholar 

  • Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013b) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201:42–51

    PubMed  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JM (2013c) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36(10):1771–1782

    CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24(3):197–208

    CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22(3):203–217

    CAS  PubMed  Google Scholar 

  • Faggioli VS, Cabello MN, Grilli G, Vasar M, Covacevich F, Öpik M (2019) Root colonizing and soil borne communities of arbuscular mycorrhizal fungi differ among soybean fields with contrasting historical land use. Agric Ecosyst Environ 269:174–182

    Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Tabassum MA (2015a) Potential role of phytohormones and plant growth–promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921

    Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Faiq M (2015b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404

    CAS  Google Scholar 

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12(4):185–190

    CAS  PubMed  Google Scholar 

  • Fesel PH, Zuccaro A (2016) Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. Curr Opin Microbiol 32:103–112

    PubMed  Google Scholar 

  • Fileccia V, Ruisi P, Ingraffia R, Giambalvo D, Frenda AS, Martinelli F (2017) Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. PLoS One 12(9):e0184158

    PubMed  PubMed Central  Google Scholar 

  • Filippou P, Tanou G, Molassiotis A, Fotopoulos V (2013) Plant acclimation to environmental stress using priming agents. In: Plant acclimation to environmental stress. Springer, New York, pp 1–27

    Google Scholar 

  • Fitter A (2002) Characteristics and functions of root systems. In: Plant roots. CRC Press, Boca Raton, pp 49–78

    Google Scholar 

  • Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Funct Plant Biol 13(1):75–91

    CAS  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda CL, Krishnamurthy L, Samineni S, Siddique KH, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33(4):490–509

    CAS  PubMed  Google Scholar 

  • Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410(1–2):335–356

    CAS  Google Scholar 

  • Franken P, Bui VC (2018) Acclimatisation of Rhizophagus irregularis enhances Zn tolerance of the fungus and the mycorrhizal plant partner. Front Microbiol 9:3156

    PubMed  PubMed Central  Google Scholar 

  • Friedman M (2002) Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem 50(21):5751–5780

    CAS  PubMed  Google Scholar 

  • Frosi G, Barros VA, Oliveira MT, Santos M, Ramos DG, Maia LC, Santos MG (2017) Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment. Tree Physiol 38(1):25–36

    Google Scholar 

  • Galston AW, Sawhney RK (1990) Polyamines in plant physiology. Plant Physiol 94(2):406–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann S (2014) Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol 201(3):951–960

    CAS  PubMed  Google Scholar 

  • Garg N, Chandel S (2015) Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Mill sp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regul 75(2):521–534

    CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Mill sp. (pigeonpea). J Agron Crop Sci 195(2):110–123

    CAS  Google Scholar 

  • Gattward JN, Almeida AAF, Souza JO Jr, Gomes FP, Kronzucker HJ (2012) Sodium–potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiol Plant 146(3):350–362

    CAS  PubMed  Google Scholar 

  • Gemenet DC, Leiser WL, Beggi F, Herrmann LH, Vadez V, Rattunde HF, Haussmann BI (2016) Overcoming phosphorus deficiency in West African pearl millet and sorghum production systems: promising options for crop improvement. Front Plant Sci 7:1389

    PubMed  PubMed Central  Google Scholar 

  • Ghorbani A, Razavi SM, Omran VOG, Pirdashti H (2018) Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russian J Plant Physiol 65(6):898–907

    CAS  Google Scholar 

  • Ghosh N, Adak MK, Ghosh PD, Gupta S, Gupta DS, Mandal C (2011) Differential responses of two rice varieties to salt stress. Plant Biotechnol Rep 5(1):89–103

    Google Scholar 

  • Gibon Y, Bessieres MA, Larher F (1997) Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? Plant Cell Environ 20(3):329–340

    Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14(5):307–312

    PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54(4):753–760

    CAS  PubMed  Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    CAS  PubMed  Google Scholar 

  • Gómez JF, Talle B, Wilson ZA (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57(11):876–891

    PubMed  PubMed Central  Google Scholar 

  • Gong M, You X, Zhang Q (2015) Effects of Glomus intraradices on the growth and reactive oxygen metabolism of foxtail millet under drought. Ann Microbiol 65(1):595–602

    CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113(1–4):17–35

    Google Scholar 

  • Grassi D, Desideri G, Ferri C (2010) Flavonoids: antioxidants against atherosclerosis. Nutrients 2(8):889–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grattan SR, Grieve CM (1999) Mineral nutrient acquisition and response by plants grown in saline environments. Handb Plant Crop Stress 2:203–229

    Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotech 27(5):1231–1240

    Google Scholar 

  • Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G (2010) Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plant 138(2):226–237

    CAS  PubMed  Google Scholar 

  • Guan F, Xia M, Tang X, Fan S (2017) Spatial variability of soil nitrogen, phosphorus and potassium contents in Moso bamboo forests in Yong’an City, China. Catena 150:161–172

    CAS  Google Scholar 

  • Hachez C, Veljanovski V, Reinhardt H, Guillaumot D, Vanhee C, Chaumont F, Batoko H (2014) The Arabidopsis abiotic stress–induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2; 7 through protein–interactions and autophagic degradation. Plant Cell 26(12):4974–4990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hage-Ahmed K, Rosner K, Steinkellner S (2019) Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag Sci 75(3):583–590

    CAS  PubMed  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt Stress in Plants: Signalling, Omics and Adaptations. Springer, New York, pp 301–354. https://doi.org/10.1007/978-1-4614-6108-1_13

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331(1–2):313–327

    CAS  Google Scholar 

  • Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of Microbes for the Alleviation of Soil Stresses, Volume 1. Springer New York, New York, NY, pp 139–159. https://doi.org/10.1007/978-1-4614-9466-9_7

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21(2):117–129

    CAS  PubMed  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    PubMed  PubMed Central  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21(6):535–553

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Google Scholar 

  • Hashem A, AbdAllah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242

    Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D, Abd_Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25(6):1102–1114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6(1):58

    PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hester MW, Mendelssohn IA, McKee KL (2001) Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. Environ Exp Bot 46(3):277–297

    CAS  Google Scholar 

  • Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A (2012) Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol 196(2):520–534

    CAS  PubMed  Google Scholar 

  • Hinojosa MB, García-Ruiz R, Carreira JA (2010) Utilizing microbial community structure and function to evaluate the health of heavy metal polluted soils. In: Soil heavy metals. Springer, Berlin, pp 185–224

    Google Scholar 

  • Hinsinger P, Herrmann L, Lesueur D, Robin A, Trap J, Waithaisong K, Plassard C (2018) Impact of roots, microorganisms and microfauna on the fate of soil phosphorus in the rhizosphere. Ann Plant Rev 48:377–407

    Google Scholar 

  • Hiruma K, Kobae Y, Toju H (2018) Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host–symbiont molecular mechanisms. Curr Opin Plant Biol 44:145–154

    CAS  PubMed  Google Scholar 

  • Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3(4):267–273

    Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Wilson GW (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13(3):394–407

    PubMed  Google Scholar 

  • Hossain MA, Fujita M (2010) Evidence for a role of exogenous glycine betaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants 16(1):19–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MM, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Plant–microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 135–191

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24(1):519–570

    CAS  Google Scholar 

  • Hu L, Li H, Pang H, Fu J (2012) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169(2):146–156

    CAS  PubMed  Google Scholar 

  • Hura T, Hura K, Grzesiak M, Rzepka A (2007) Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants. Acta Physiol Plant 29(2):103

    CAS  Google Scholar 

  • Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49(3):867–877

    CAS  Google Scholar 

  • Igiehon NO, Babalol OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Environ Res Public Health 15(4):574

    PubMed Central  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    PubMed  PubMed Central  Google Scholar 

  • Iordachescu M, Imai R (2011) Trehalose and abiotic stress in biological systems. Abiotic stress in plants—mechanisms and adaptations. InTech, Rijeka, pp 215–234

    Google Scholar 

  • Ishibashi Y, Tawaratsumida T, Zheng SH, Yuasa T, Iwaya-Inoue M (2010) NADPH oxidases act as key enzyme on germination and seedling growth in barley (Hordeum vulgare L.). Plant Prod Sci 13(1):45–52

    CAS  Google Scholar 

  • Jackson SK, Hancock JT, James PE (2007) Biological free radicals and biomedical applications of EPR spectroscopy. Electron Paramagn Reson 20:192–244

    CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbl Ecol 55(1):45

    Google Scholar 

  • Jakobsen I, Hammer EC (2015) Nutrient dynamics in arbuscular mycorrhizal networks. In: Mycorrhizal networks. Springer, Dordrecht, pp 91–131

    Google Scholar 

  • Jakobsen I, Smith SE, Smith FA (2003) Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: Mycorrhizal ecology. Springer, Berlin, pp 75–92

    Google Scholar 

  • Javeria S, Kumar V, Sharma P, Prasad L, Kumar M, Varma A (2017) Mycorrhizal symbiosis: ways underlying plant–fungus interactions. In: Mycorrhiza—eco-physiology, secondary metabolites, nanomaterials. Springer, Cham, pp 183–207

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37(1):1–16

    Google Scholar 

  • Jiang C, Zhang X, Liu H, Xu JR (2018) Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog 14(3):e1006875

    PubMed  PubMed Central  Google Scholar 

  • Jing E, Emanuelli B, Hirschey MD, Boucher J, Lee KY, Lombard D, Kahn CR (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Nat Acad Sci 108(35):14608–14613

    CAS  PubMed  Google Scholar 

  • Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016) Mass spectrometry–based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35(5):620–649

    CAS  PubMed  Google Scholar 

  • Joseph B, Jini D, Sujatha S (2011) Development of salt stress–tolerant plants by gene manipulation of antioxidant enzymes. Asian J Agric Res 5(1):17–27

    CAS  Google Scholar 

  • Juan M, Rivero RM, Romero L, Ruiz JM (2005) Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environ Exp Bot 54(3):193–201

    CAS  Google Scholar 

  • Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trend Plant Sci 20(9):586–594

    CAS  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38(6):651–664

    CAS  PubMed  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular–arbuscular mycorrhiza and soil salinity. Mycorrhiza 4(2):45–57

    Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5(3):233–238

    PubMed  PubMed Central  Google Scholar 

  • Karami A, Homaee M, Afzalinia S, Ruhipour H, Basirat S (2012) Organic resource management: impacts on soil aggregate stability and other soil physico-chemical properties. Agric Ecosyst Environ 148:22–28

    CAS  Google Scholar 

  • Katschnig D, Broekman R, Rozema J (2013) Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot 92:32–42

    CAS  Google Scholar 

  • Kaur T, Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Dhaliwal HS, Saxena AK (2020) Microbe-mediated biofortification for micronutrients: present status and future challenges. In: Rastegari AA, Yadav AN, Awasthi AK, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 1–17. https://doi.org/10.1016/B978-0-12-820528-0.00002-8

    Chapter  Google Scholar 

  • Kaushal M (2019) Microbes in cahoots with plants: MIST to hit the jackpot of agricultural productivity during drought. Int J Mol Sci 20(7):1769

    CAS  PubMed Central  Google Scholar 

  • Kaushal M, Wani SP (2016) Rhizobacterial–plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78

    CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121(1):1–6

    CAS  Google Scholar 

  • Khalmuratova I, Kim H, Nam YJ, Oh Y, Jeong MJ, Choi HR, Yoon H (2015) Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of Korea. Mycobiol 43(4):373–383

    Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30(1):81

    CAS  Google Scholar 

  • Khatabi B, Gharechahi J, Ghaffari MR, Liu D, Haynes PA, McKay MJ, Salekdeh GH (2019) Plant–microbe symbiosis: what has proteomics taught us. Proteomic 19(16):1800105

    Google Scholar 

  • Kiers ET, Adler LS, Grman EL, Van Der Heijden MG (2010) Manipulating the jasmonate response: how do methyl jasmonate additions mediate characteristics of aboveground and belowground mutualisms. Funct Ecol 24(2):434–443

    Google Scholar 

  • Kim YC, Glick BR, Bashan Y, Ryu CM (2012) Enhancement of plant drought tolerance by microbes. In: Plant responses to drought stress. Springer, Berlin, pp 383–413

    Google Scholar 

  • Kissoudis C, Chowdhury R, van Heusden S, van de Wiel C, Finkers R, Visser RG, van der Linden G (2015) Combined biotic and abiotic stress resistance in tomato. Euphytica 202(2):317–332

    CAS  Google Scholar 

  • Koltai H, Kapulnik Y (2011) Strigolactones as mediators of plant growth responses to environmental conditions. Plant Signal Behav 6(1):37–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong CC, Ren CG, Li RZ, Xie ZH, Wang JP (2017) Hydrogen peroxide and strigolactones signaling are involved in alleviation of salt stress induced by arbuscular mycorrhizal fungus in Sesbania cannabina seedlings. J Plant Growth Regul 36(3):734–742

    CAS  Google Scholar 

  • Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38(2):606–618

    CAS  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Recent advancement in white biotechnology through fungi. Springer, Cham, pp 1–64

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, et al. (2019a) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 2: perspective for value-added products and environments. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, Saxena AK (2020) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1

    Article  Google Scholar 

  • Kravić N, Marković K, Anđelković V, Šukalović VHT, Babić V, Vuletić M (2013) Growth, proline accumulation and peroxidase activity in maize seedlings under osmotic stress. Acta Physiol Plant 35(1):233–239

    Google Scholar 

  • Kumar A, Dames JF, Gupta A, Sharma S, Gilbert JA, Ahmad P (2014) Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Crit Rev Biotechnol 35(4):461–474

    PubMed  Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P, Kumar R, Khan SA, Yadav KK, Rana KL, Kour D, Yadav N, Yadav AN (2019a) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 3: perspective for sustainable environments. Springer, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

    Chapter  Google Scholar 

  • Kumar M, Saxena R, Rai PK, Tomar RS, Yadav N, Rana KL, Kour D, Yadav AN (2019b) Genetic diversity of methylotrophic yeast and their impact on environments. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 3: perspective for sustainable environments. Springer, Cham, pp 53–71. https://doi.org/10.1007/978-3-030-25506-0_3

    Chapter  Google Scholar 

  • Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18(1):124

    PubMed  PubMed Central  Google Scholar 

  • Laouane RB, Meddich A, Bechtaoui N, Oufdou K, Wahbi S (2019) Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanzen 71(2):135–146

    Google Scholar 

  • Latef AAHA, Hashem A, Rasool S, Abd_Allah EF, Alqarawi AA, Egamberdieva D, Ahmad P (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Biol 59(5):407–426

    Google Scholar 

  • Le Fevre R, O’Boyle B, Moscou MJ, Schornack S (2016) Colonization of barley by the broad-host hemibiotrophic pathogen Phytophthora palmivora uncovers a leaf development–dependent involvement of Mlo. Mol Plant-Microbe Interact 29(5):385–395

    PubMed  Google Scholar 

  • Lee Y, Krishnamoorthy R, Selvakumar G, Kim K, Sa T (2015) Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20. J Korean Soc Appl Biol Chem 58(4):533–540

    CAS  Google Scholar 

  • Lenoir I, Fontaine J, Sahraoui ALH (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    CAS  PubMed  Google Scholar 

  • Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD (2013) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197(2):617–630

    CAS  PubMed  Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840(5):1574–1582

    CAS  PubMed  Google Scholar 

  • Li X, Han S, Wang G, Liu X, Amombo E, Xie Y, Fu J (2017) The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass. Front Microbiol 8:1664

    PubMed  PubMed Central  Google Scholar 

  • Li X, Sun X, Wang G, Amombo E, Zhou X, Du Z, Fu J (2019) Inoculation with Aspergillus aculeatus alters the performance of perennial ryegrass under phosphorus deficiency. J Am Soc Horticult Sci 144(3):182–192

    CAS  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495(1):286–291

    CAS  PubMed  Google Scholar 

  • Liu Z, Ma L, He X, Tian C (2014) Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Appl Soil Ecol 84:185–191

    Google Scholar 

  • Lone R, Shuab R, Khan S, Ahmad J, Koul KK (2017) Arbuscular mycorrhizal fungi for sustainable agriculture. In: Probiotics and plant health. Springer, Singapore, pp 553–577

    Google Scholar 

  • Lorenzo-Gutiérrez D, Gómez-Gil L, Guarro J, Roncero MIG, Fernández-Bravo A, Capilla J, López-Fernández L (2019) Role of the Fusarium oxysporum metallothionein Mt1 in resistance to metal toxicity and virulence. Metallomic 11(7):1230–1240

    Google Scholar 

  • Low PS (1985) Molecular basis of the biological compatibility of nature’s osmolytes. In: Transport processes, iono and osmoregulation. Springer, Berlin, pp 469–477

    Google Scholar 

  • Lüttge U (2013) Whole-plant physiology: synergistic emergence rather than modularity. In: Progress in botany. Springer, Berlin, pp 165–190

    Google Scholar 

  • Ma L, Sun X, Kong X, Galvan JV, Li X, Yang S, Hu X (2015) Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the northwestern Tibetan plateau. J Proteom 112:63–82

    CAS  Google Scholar 

  • Maathuis FJ, Amtmann ANNA (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84(2):123–133

    CAS  Google Scholar 

  • Maathuis FJ, Podar D, Hawkesford MJ, Barraclough P (2011) Uptake, distribution, and physiological functions of potassium, calcium, and magnesium. In: The molecular and physiological basis of nutrient use efficiency in crops. Wiley, Chichester, pp 265–293

    Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulture 3(2):30

    Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting effects of GA 3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29(1):63–72

    CAS  Google Scholar 

  • Mahdhi M, Mahmoudi N, Msaadek A, Rejili M, Mars M (2017) Natural nodulation and AMF colonization of Retama raetam and their impact on soil microbial properties in arid regions of Tunisia. Res J Microbiol 12:82–89

    CAS  Google Scholar 

  • Mahmood A, Kataoka R, Turgay OC, Yaprak AE (2019) Halophytic microbiome in ameliorating the stress. In: Eco physiology, abiotic stress responses and utilization of halophytes. Springer, Singapore, pp 171–194

    Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43(4):491–500

    CAS  Google Scholar 

  • Maralian H, Ebadi A, Haji-Eghrari B (2010) Influence of water deficit stress on wheat grain yield and proline accumulation rate. Afr J Agric Res 5(4):286–289

    Google Scholar 

  • Martínez-Medina A, Roldán A, Albacete A, Pascual JA (2011) The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72(2–3):223–229

    PubMed  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2006) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58(1):83–102

    PubMed  Google Scholar 

  • Matamoros MA, Dalton DA, Becana M (2017) Ascorbate metabolism and nitrogen fixation in legumes. In: Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham, pp 471–490

    Google Scholar 

  • Matsui H, Homareda H (1982) Interaction of sodium and potassium ions with Na+, K+-ATPase. I. Ouabain-sensitive alternative binding of three Na+ or two K+ to the enzyme. J Biochem 92(1):193–217

    CAS  PubMed  Google Scholar 

  • Metwally RA, Abdelhameed RE (2018) Synergistic effect of arbuscular mycorrhizal fungi on growth and physiology of salt-stressed Trigonella foenum-graecum plants. Biocatal Agric Biotechnol 16:538–544

    Google Scholar 

  • Mia S, Van Groenigen JW, Van de Voorde TFJ, Oram NJ, Bezemer TM, Mommer L, Jeffery S (2014) Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric Ecosyst Environ 191:83–91

    CAS  Google Scholar 

  • Miransari M, Abrishamchi A, Khoshbakht K, Niknam V (2014) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Critic Rev Biotech 34(2):123–133

    CAS  Google Scholar 

  • Mohammadi K, Khalesro S, Sohrabi Y, Heidari G (2011) A review: beneficial effects of the mycorrhizal fungi for plant growth. J Appl Environ Biol Sci 1(9):310–319

    Google Scholar 

  • Mondal HK, Kaur H (2017) Effect of salt stress on medicinal plants and its amelioration by plant growth promoting microbes. Int J Bio-Res Stress Manag 8(2):316–326

    Google Scholar 

  • Montaño NM, Alarcón A, Camargo-Ricalde SL, Hernández-Cuevas LV, Álvarez-Sánchez J, González-Chávez MDCA, Maldonado-Mendoza IE (2012) Research on arbuscular mycorrhizae in Mexico: an historical synthesis and future prospects. Symbiosis 57(3):111–126

    Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism: the state of the art. Plant Signal Behav 3(12):1061–1066

    PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M (2015) Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasm 252(2):461–475

    CAS  Google Scholar 

  • Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP (2018) Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ 41(10):2227–2243

    CAS  PubMed  Google Scholar 

  • Moussaid S, Domínguez-Ferreras A, Muñoz S, Aurag J, Sanjuán J (2015) Increased trehalose biosynthesis improves Mesorhizobium ciceri growth and symbiosis establishment in saline conditions. Symbiosis 67(1–3):103–111

    CAS  Google Scholar 

  • Muhammad M, Setyaningrum H (2017) Exploration and application of mycorrhiza as input of biological fertilizer technology to increase growth and melon quality. J Agroqua Media Inf Agron Budid Perair 15(2):1–12

    Google Scholar 

  • Muleta D (2017) Legume response to arbuscular mycorrhizal fungi inoculation in sustainable agriculture. In: Microbes for legume improvement. Springer, Cham, pp 227–260

    Google Scholar 

  • Munns R, Passioura JB (1984) Effect of prolonged exposure to NaCl on the osmotic pressure of leaf xylem sap from intact, transpiring barley plants. Funct Plant Biol 11(6):497–507

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    PubMed  Google Scholar 

  • Nagler K, Setlow P, Reineke K, Driks A, Moeller R (2015) Involvement of coat proteins in Bacillus subtilis spore germination in high-salinity environments. Appl Environ Microbiol l81(19):6725–6735

    Google Scholar 

  • Nasim G (2010) The role of arbuscular mycorrhizae in inducing resistance to drought and salinity stress in crops. In: Plant adaptation and phytoremediation. Springer, Dordrecht, pp 119–141

    Google Scholar 

  • Navarro JM, Pérez-Tornero O, Morte A (2014) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171(1):76–85

    CAS  PubMed  Google Scholar 

  • Obroucheva NV (2013) Aquaporins in seeds. Seed Sci Res 23(4):213–216

    Google Scholar 

  • Oehl F, Körner C (2014) Multiple mycorrhization at the coldest place known for angiosperm plant life. Alp Bot 124(2):193–198

    Google Scholar 

  • Oehl F, Laczko E, Oberholzer HR, Jansa J, Egli S (2017) Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biol Fertil Soil 53(7):777–797

    Google Scholar 

  • Onofre SB, Santos ZM, Kagimura FY, Mattiello SP (2015) Cellulases produced by the endophytic fungus Pycnoporus sanguineus (L.) Murrill. Afr J Agric Res 10(13):1557–1564

    CAS  Google Scholar 

  • Öpik M, Davison J, Moora M, Zobel M (2013) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92(2):135–147

    Google Scholar 

  • Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57(1–2):177–186

    CAS  Google Scholar 

  • Pagano MC, Oehl F, Silva GA, Maia LC, Silva DK, Cabello MN (2016) Advances in arbuscular mycorrhizal taxonomy. In: Recent advances on mycorrhizal fungi. Springer, Cham, pp 15–21

    Google Scholar 

  • Pal RN, Laloraya MM (1972) Effect of calcium levels on chlorophyll synthesis in peanut and linseed plants. Biochem Physiol Pflanz 163(5):443–449

    CAS  Google Scholar 

  • Pál M, Tajti J, Szalai G, Peeva V, Végh B, Janda T (2018) Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci Report 8(1):12839

    Google Scholar 

  • Panagiotidis CA, Blackburn S, Low KB, Canellakis ES (1987) Biosynthesis of polyamines in ornithine decarboxylase, arginine decarboxylase, and agmatine ureohydrolase deletion mutants of Escherichia coli strain K-12. Proc Natl Acad Sci 84(13):4423–4427

    CAS  PubMed  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44(3):243–252

    CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    CAS  PubMed  Google Scholar 

  • Parihar P, Bora M (2019) Plants growing under salinity stress can be eased through mycorrhizal association. In: Salt stress, microbes, and plant interactions: causes and solution. Springer, Singapore, pp 237–248

    Google Scholar 

  • Parihar M, Rakshit A (2016) Arbuscular mycorrhiza: a versatile component for alleviation of salt stress. Nat Environ Pollut Technol 15(2):417

    CAS  Google Scholar 

  • Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35(3):877–902

    CAS  Google Scholar 

  • Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53(2):101–110

    CAS  PubMed  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34(4):737–752

    Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    CAS  PubMed  Google Scholar 

  • Pereira SI, Moreira H, Argyras K, Castro PM, Marques AP (2016) Promotion of sunflower growth under saline water irrigation by the inoculation of beneficial microorganisms. Appl Soil Ecol 105:36–47

    Google Scholar 

  • Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotech 50(2):98–115

    CAS  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Ind J Clin Biochem 30(1):11–26

    CAS  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth–promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soil 51(4):403–415

    CAS  Google Scholar 

  • Plouznikoff K, Declerck S, Calonne-Salmon M (2016) Mitigating abiotic stresses in crop plants by arbuscular mycorrhizal fungi. In: Belowground defence strategies in plants. Springer, Cham, pp 341–400

    Google Scholar 

  • Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Fotopoulos V (2018) Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 247(3):573–585

    CAS  PubMed  Google Scholar 

  • Popko J, Hänsch R, Mendel RR, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12(2):242–258

    CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32(1):181–200

    CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26(7):673–684

    CAS  PubMed  Google Scholar 

  • Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220(4):1059–1075

    PubMed  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13(4):275–294

    Google Scholar 

  • Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline–sodic soils. Adv Agron 96:197–247

    CAS  Google Scholar 

  • Raines T, Shanks C, Cheng CY, McPherson D, Argueso CT, Kim HJ, Schaller GE (2016) The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant J 85(1):134–147

    CAS  PubMed  Google Scholar 

  • Rajam MV, Dagar S, Waie B, Yadav JS, Kumar PA, Shoeb F, Kumria R (1998) Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants. J Biosci 23(4):473–482

    CAS  Google Scholar 

  • Ramos AS, Correia AT, Antunes SC, Gonçalves F, Nunes B (2014) Effect of acetaminophen exposure in Oncorhynchus mykiss gills and liver: detoxification mechanisms, oxidative defence system and peroxidative damage. Environ Toxicol Pharmacol 37(3):1221–1228

    CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rani S, Sharma MK, Kumar N (2019) Impact of salinity and zinc application on growth, physiological and yield traits in wheat. Curr Sci (00113891) 116(8):1324–1330

    CAS  Google Scholar 

  • Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 21–42

    Google Scholar 

  • Rare E (1990) Stress physiology: the functional significance of the accumulation of nitrogen-containing compounds. J Hortic Sci 65(3):231–243

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Redillas MC, Park SH, Lee JW, Kim YS, Jeong JS, Jung H, Kim JK (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6(1):89–96

    Google Scholar 

  • Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangroves. Tree Physiol 30(9):1148–1160

    CAS  PubMed  Google Scholar 

  • Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C (2012) Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 12(1):207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rejili M, Vadel AM, Guetet A, Neffatti M (2007) Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae). S Afr J Bot 73(4):623–631

    CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017–1023

    CAS  PubMed  Google Scholar 

  • Rewald B, Shelef O, Ephrath JE, Rachmilevitch S (2013) Adaptive plasticity of salt-stressed root systems. In: Ecophysiology and responses of plants under salt stress. Springer, New York, pp 169–201

    Google Scholar 

  • Reynolds CS, Davies PS (2001) Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biol Rev 76(1):27–64

    CAS  PubMed  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Biol 44(1):357–384

    CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    CAS  Google Scholar 

  • Robbins NE, Dinneny JR (2015) The divining root: moisture-driven responses of roots at the micro- and macro-scale. J Exp Bot 66(8):2145–2154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues JV, Gomes CM (2010) Enhanced superoxide and hydrogen peroxide detection in biological assays. Free Radic Biol Med 49(1):61–66

    CAS  PubMed  Google Scholar 

  • Romero-Munar A, Del-Saz NF, Ribas-Carbó M, Flexas J, Baraza E, Florez-Sarasa I, Gulías J (2017) Arbuscular mycorrhizal symbiosis with Arundo donax decreases root respiration and increases both photosynthesis and plant biomass accumulation. Plant Cell Environ 40(7):1115–1126

    CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13(6):309–317

    PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1997) Effect of calcium application on the tolerance of mycorrhizal lettuce plants to polyethylene glycol. Symbiosis 23(1):9–22

    Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes. New Phytol 171(4):693–698

    CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycine-betaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125(1):180–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez DH, Cuevas JC, Chiesa M, Ruiz OA (2005) Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci 168(2):541–546

    CAS  Google Scholar 

  • Sánchez-Bel P, Sanmartín N, Pastor V, Mateu D, Cerezo M, Vidal-Albalat A, Flors V (2018) Mycorrhizal tomato plants fine tune the growth–defence balance upon N depleted root environments. Plant Cell Environ 41(2):406–420

    PubMed  Google Scholar 

  • Sands R, Fiscus EL, Reid CPP (1982) Hydraulic properties of pine and bean roots with varying degrees of suberization, vascular differentiation and mycorrhizal infection. Funct Plant Biol 9(5):559–569

    Google Scholar 

  • Sannazzaro AI, Echeverría M, Albertó EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45(1):39–46

    CAS  PubMed  Google Scholar 

  • Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P (2017) Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27(7):639–657

    CAS  PubMed  Google Scholar 

  • Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V (2013) Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep 32(7):1085–1098

    CAS  PubMed  Google Scholar 

  • Savitha MM, Anitha P, Sumalatha BS, Tejavathi DH (2016) Effect of mycorrhizal association on nodule number, mass, leghaemoglobin and free proline content in Macrotyloma uniflorum (lam.) Verdc. under PEG induced water stress. Int J Curr Microbiol Appl Sci 5(4):165–174

    Google Scholar 

  • Schachtman DP, Bloom AJ, Dvořák J (1989) Salt-tolerant Triticum × Lophopyrum derivatives limit the accumulation of sodium and chloride ions under saline-stress. Plant Cell Environ 12(1):47–55

    CAS  Google Scholar 

  • Schmidt JE, Gaudin AC (2017) Toward an integrated root ideotype for irrigated systems. Trend Plant Sci 22(5):433–443

    CAS  Google Scholar 

  • Sellitto VM, Golubkina NA, Pietrantonio L, Cozzolino E, Cuciniello A, Cenvinzo V, Caruso G (2019) Tomato yield, quality, mineral composition and antioxidants as affected by beneficial microorganisms under soil salinity induced by balanced nutrient solutions. Agriculture 9(5):110

    CAS  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    CAS  PubMed  Google Scholar 

  • Shabala SN, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129(1):290–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala L, Mackay A, Tian Y, Jacobsen SE, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant 146(1):26–38

    CAS  PubMed  Google Scholar 

  • Shahid M, Khan MS, Kumar M (2019) Kitazin-pea interaction: understanding the fungicide induced nodule alteration, cytotoxicity, oxidative damage and toxicity alleviation by Rhizobium leguminosarum. RSC Adv 9(30):16929–16947

    CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164(9):1144–1151

    CAS  PubMed  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, Thakur S, Thakur N, Sudheer S, Yadav N, Yadav AN, Rastegari AA, Singh K (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

    Chapter  Google Scholar 

  • Sharp RE, Davies WJ (1985) Root growth and water uptake by maize plants in drying soil. J Exp Bot 36(9):1441–1456

    Google Scholar 

  • Sheng M, Zhang X, Chen X, Hamel C, Huang S, Tang M (2019) Biogeography of arbuscular mycorrhizal fungal communities in saline ecosystems of northern China. Appl Soil Ecol 143:213–221

    Google Scholar 

  • Shinde P (2018) Effect of seed polymer coating with micronutrients on seed quality of chickpea (Cicer arietinum L.). J Pharm Phytochem 7(6):1152–1155

    CAS  Google Scholar 

  • Shinde BP, Singh N (2017) Effect of arbuscular mycorrhizal fungi on growth parameters of sweet corn under NaCl salinity. Int J Curr Microbiol App Sci 6(2):1317–1325

    CAS  Google Scholar 

  • Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8(2):79–83

    CAS  Google Scholar 

  • Shu S, Yuan LY, Guo SR, Sun J, Yuan YH (2013) Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol Biochem 63:209–216

    CAS  PubMed  Google Scholar 

  • Silva FC, Cruz NC, Tarelho LA, Rodrigues SM (2019) Use of biomass ash–based materials as soil fertilizers: critical review of the existing regulatory framework. J Clean Prod 214:112–124

    Google Scholar 

  • Singh A (2015) Soil salinization and waterlogging: a threat to environment and agricultural sustainability. Ecol Indic 57:128–130

    Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3–4):339–353

    Google Scholar 

  • Singh R, Upadhyay AK, Chandra P, Singh DP (2018) Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour Technol 270:489–497

    CAS  PubMed  Google Scholar 

  • Singh A, Kumari R, Yadav AN, Mishra S, Sachan A, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Awasthi AK, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–16. https://doi.org/10.1016/B978-0-12-820526-6.00001-4

    Chapter  Google Scholar 

  • Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203

    CAS  PubMed  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soliman AS, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr J Biotechnol 11(5):1259–1266

    CAS  Google Scholar 

  • Sotiropoulos TE (2007) Effect of NaCl and CaCl2 on growth and contents of minerals, chlorophyll, proline and sugars in the apple rootstock M4 cultured in vitro. Biol Plant 51(1):177–180

    CAS  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5(6):431–438

    Google Scholar 

  • Stratu A, Costică N, Costică M (2016) Wooden species in the urban green areas and their role in improving the quality of the environment. Environ Sustain Dev 10(2):173–184

    Google Scholar 

  • Sudha G, Ravishankar G (2002) Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Organ Cult 71:181

    CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Suo J, Zhao Q, David L, Chen S, Dai S (2017) Salinity response in chloroplasts: insights from gene characterization. Int J Mol Sci 18(5):1011

    PubMed Central  Google Scholar 

  • Symanczik S, Lehmann MF, Wiemken A, Boller T, Courty PE (2018) Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza 28(8):779–785

    CAS  PubMed  Google Scholar 

  • Syvertsen JP, Garcia-Sanchez F (2014) Multiple abiotic stresses occurring with salinity stress in citrus. Environ Exp Bot 103:128–137

    CAS  Google Scholar 

  • Talaat NB, Shawky BT (2013) Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. Acta Physiol Plant 35(8):2601–2610

    CAS  Google Scholar 

  • Talaat NB, Shawky BT (2015) Plant–microbe interaction and salt stress tolerance in plants. Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press/Taylor & Francis Group, Boca Raton, pp 267–289

    Google Scholar 

  • Talaat NB, Shawky BT (2017) Microbe-mediated induced abiotic stress tolerance responses in plants. In: Plant–microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 101–133

    Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26(3):387–395

    CAS  Google Scholar 

  • Termaat A, Munns R (1986) Use of concentrated macronutrient solutions to separate osmotic from NaCl-specific effects on plant growth. Funct Plant Biol 13(4):509–522

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26(2):143–148

    Google Scholar 

  • Tischner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23(10):1005–1024

    CAS  Google Scholar 

  • Tofighi C, Khavari-Nejad RA, Najafi F, Razavi K, Rejali F (2017) Responses of wheat plants to interactions of 24-epibrassinolide and Glomus mosseae in saline condition. Physiol Mol Biol Plant 23(3):557–564

    CAS  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50(4):251–260

    CAS  PubMed  Google Scholar 

  • Tramontano WA, Jouve D (1997) Trigonelline accumulation in salt-stressed legumes and the role of other osmoregulator as cell cycle control agents. Phytochemistry 44(6):1037–1040

    CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. In: Methods in enzymology, vol 428. Academic Press, Cambridge, MA, pp 419–438

    Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25(2):173–194

    CAS  PubMed  Google Scholar 

  • Uhlmann E, Görke C, Petersen A, Oberwinkler F (2006) Arbuscular mycorrhizae from arid parts of Namibia. J Arid Environ 64(2):221–237

    Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313(2):369–375

    CAS  PubMed  Google Scholar 

  • Vályi K, Mardhiah U, Rillig MC, Hempel S (2016) Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J 10(10):2341–2351

    PubMed  PubMed Central  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    PubMed  Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bio effectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4(1):5

    Google Scholar 

  • Vangelisti A, Natali L, Bernardi R, Sbrana C, Turrini A, Hassani-Pak K, Giordani T (2018) Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Sci Rep 8(1):4

    PubMed  PubMed Central  Google Scholar 

  • Vaseva II, Grigorova BS, Simova-Stoilova LP, Demirevska KN, Feller U (2010) Abscisic acid and late embryogenesis abundant protein profile changes in winter wheat under progressive drought stress. Plant Biol 12(5):698–707

    CAS  PubMed  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecule 21(5):573

    Google Scholar 

  • Venneman J, Audenaert K, Verwaeren J, Baert G, Boeckx P, Moango AM, Haesaert G (2017) Congolese rhizospheric soils as a rich source of new plant growth–promoting endophytic Piriformospora isolates. Front Microbiol 8:212

    PubMed  PubMed Central  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trend Plant Sci 21(3):187–198

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant–microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant–microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  • Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T (2017) Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic aspects. Plant Sci 264:48–56

    CAS  PubMed  Google Scholar 

  • Veselaj E, Sallaku G, Balliu A (2018) Tripartite relationships in legume crops are plant-microorganism-specific and strongly influenced by salinity. Agriculture 8(8):117

    Google Scholar 

  • Viets FG Jr (1962) Micronutrient availability, chemistry and availability of micronutrients in soils. J Agric Food Chem 10(3):174–178

    CAS  Google Scholar 

  • Vilela LAF, Barbosa MV (2019) Contribution of arbuscular mycorrhizal fungi in promoting cadmium tolerance in plants. In: Cadmium tolerance in plants. Academic Press, Cambridge, MA, pp 553–586

    Google Scholar 

  • Volkmar KM, Hu Y, Steppuhn H (1998) Physiological responses of plants to salinity: a review. Can J Plant Sci 78(1):19–27

    CAS  Google Scholar 

  • Walker C, Harper CJ, Brundrett MC, Krings M (2018) Looking for arbuscular mycorrhizal fungi in the fossil record: an illustrated guide. In: Transformative paleobotany. Academic Press, Cambridge, MA, pp 481–517

    Google Scholar 

  • Wang CQ (2011) Water-stress mitigation by selenium in Trifolium repens L. J Plant Nutr Soil Sci 174(2):276–282

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    CAS  PubMed  Google Scholar 

  • Wang Y, Qiu Q, Yang Z, Hu Z, Tam NFY, Xin G (2010) Arbuscular mycorrhizal fungi in two mangroves in South China. Plant Soil 331(1–2):181–191

    CAS  Google Scholar 

  • Wang S, Zhao F, Wei X, Lu B, Duan D, Wang G (2013) Preliminary study on flg22-induced defense responses in female gametophytes of Saccharina japonica (Phaeophyta). J Appl Phycol 25(4):1215–1223

    CAS  Google Scholar 

  • Wang J, Meng Y, Li B, Ma X, Lai Y, Si E, Wang DI (2015) Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. Plant Cell Environ 38(4):655–669

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Z, Zhang P, Cao Y, Hu T, Yang P (2016) Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.). Plant Soil 402(1–2):247–261

    Google Scholar 

  • Wang S, Augé RM, Toler HD (2017) Arbuscular mycorrhiza formation and its function under elevated atmospheric O3: a meta-analysis. Environ Pollut 226:104–117

    CAS  PubMed  Google Scholar 

  • Wang J, Fu Z, Ren Q, Zhu L, Lin J, Zhang J, Yue J (2019) Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) makino seedlings under salt stress. Forests 10(2):186

    Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176

    Google Scholar 

  • Waraich EA, Ahmad R, Ashraf MY, Saifullah Ahmad M (2011) Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric Scand Sect B Soil Plant Sci 61(4):291–304

    CAS  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12(2):221–244

    Google Scholar 

  • Weber DJ (2009) Adaptive mechanisms of halophytes in desert regions. In: Ashraf M, Ozturk M, Athar H (eds) Salinity and water stress. Tasks for vegetation sciences, vol 44. Springer, Dordrecht

    Google Scholar 

  • Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA (2004) Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 11(11):1101

    CAS  PubMed  Google Scholar 

  • Welch RM, Shuman L (1995) Micronutrient nutrition of plants. Critic Rev Plant Sci 14(1):49–82

    CAS  Google Scholar 

  • Wendling LA, Blomberg P, Sarlin T, Priha O, Arnold M (2013) Phosphorus sorption and recovery using mineral-based materials: sorption mechanisms and potential phytoavailability. Appl Geochem 37:157–169

    CAS  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88(6):967–988

    CAS  Google Scholar 

  • Wishnia A, Boussert A, Graffe M, Dessen PH, Grunberg-Manago M (1975) Kinetics of the reversible association of ribosomal subunits: stopped-flow studies of the rate law and of the effect of Mg2+. J Mol Biol 93(4):499–515

    CAS  PubMed  Google Scholar 

  • Wu L, Huang ZZ, Burau RG (1988) Selenium accumulation and selenium-salt tolerance in five grass species. Crop Sci 28(3):517–522

    CAS  Google Scholar 

  • Wu QS, Zou YN, He XH (2010) Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol Plant 32(2):297–304

    Google Scholar 

  • Wu QS, Srivastava AK, Zou YN (2013) AMF-induced tolerance to drought stress in citrus: a review. Scientia Hortic 164:77–87

    CAS  Google Scholar 

  • Xiao X, Xu X, Yang F (2008) Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica 42(5):705–719

    Google Scholar 

  • Xie HT, Wan ZY, Li S, Zhang Y (2014) Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell 26(5):2007–2023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN (2019) Fungal white biotechnology: conclusion and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 3: perspective for sustainable environments. Springer, Cham, pp 491–498. https://doi.org/10.1007/978-3-030-25506-0_20

    Chapter  Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:48–55

    CAS  Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, New York, pp 305–332

    Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, New York, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018c) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019a) Seasonal variations in culturable Archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 1: diversity and enzymes perspectives. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019d) Recent advancement in white biotechnology through fungi. Volume 3: perspective for sustainable environments. Springer, Cham

    Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer, Cham

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020b) Advances in plant microbiome and sustainable agriculture: diversity and biotechnological applications. Springer, Singapore

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Kour D (2020c) Advances in plant microbiome and sustainable agriculture: functional annotation and future challenges. Springer, Singapore

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020d) Plant microbiomes for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth–promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Anton Van Leeuwenhoek 107(6):1519–1532

    CAS  Google Scholar 

  • Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, Inanami O (2012) Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by up regulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med 53(2):260–270

    CAS  PubMed  Google Scholar 

  • Yang G, Liu N, Lu W, Wang S, Kan H, Zhang Y, Chen Y (2014a) The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. J Ecol 102(4):1072–1082

    CAS  Google Scholar 

  • Yang SJ, Zhang ZL, Xue YX, Zhang ZF, Shi SY (2014b) Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Bot Stud 55(1):70

    PubMed  PubMed Central  Google Scholar 

  • Yang H, Schroeder-Moreno M, Giri B, Hu S (2018a) Arbuscular mycorrhizal fungi and their responses to nutrient enrichment. In: Root biology. Springer, Cham, pp 429–449

    Google Scholar 

  • Yang L, Sui X, Liu Y, Wang J, Wu Y, Zhang T, Ni H (2018b) Abundance and diversity of arbuscular mycorrhizal fungi (AMF) in Calamanrostis angustifolia wetlands of the Sanjiang Plain, China. Int J Agric Biol 20(6):1424–1432

    CAS  Google Scholar 

  • Yasmeen T, Tariq M, Iqbal S, Arif MS, Riaz M, Shahzad SM, Li T (2019) Ameliorative capability of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) against salt stress in plant. In: Plant abiotic stress tolerance. Springer, Cham, pp 409–448

    Google Scholar 

  • Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plant 58(2):214–222

    CAS  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231(3):609–621

    CAS  PubMed  Google Scholar 

  • Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Cha-Um S (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Scientia Hortic 198:107–117

    CAS  Google Scholar 

  • York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ (2016) The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. J Exp Bot 67(12):3629–3643

    CAS  PubMed  Google Scholar 

  • Zahir ZA, Nadeem SM, Khan MY, Binyamin R, Waqas MR (2019) Role of halotolerant microbes in plant growth promotion under salt stress conditions. In: Saline soil–based agriculture by halotolerant microorganisms. Springer, Singapore, pp 209–253

    Google Scholar 

  • Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zangaro W, Alves RA, Lescano LE, Ansanelo AP, Nogueira MA (2012) Investment in fine roots and arbuscular mycorrhizal fungi decrease during succession in three Brazilian ecosystems. Biotropica 44(2):141–150

    Google Scholar 

  • Zarea MJ, Karimi N, Goltapeh EM, Ghalavand A (2011) Effect of cropping systems and arbuscular mycorrhizal fungi on soil microbial activity and root nodule nitrogenase. J Saudi Soc Agric Sci 10(2):109–120

    CAS  Google Scholar 

  • Zhang HS, Qin FF, Qin P, Pan SM (2014) Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues. Mycorrhiza 24(5):383–395

    PubMed  Google Scholar 

  • Zhang M, Smith JAC, Harberd NP, Jiang C (2016a) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91(6):651–659

    CAS  PubMed  Google Scholar 

  • Zhang S, Gan Y, Xu B (2016b) Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 7:1405

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Chen J, Jia R, Ma Q, Zon Z, Wang Y (2018a) Suppression of plant wilt diseases by nonpathogenic Fusarium oxysporum Fo47 combined with Actinomycetes strains. Biocontrol Sci Technol 28(6):562–573

    Google Scholar 

  • Zhang T, Hu Y, Zhang K, Tian C, Guo J (2018b) Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind Crop Prod 117:13–19

    CAS  Google Scholar 

  • Zhou ML, Zhang Q, Sun ZM, Chen LH, Liu BX, Zhang KX, Wu YM (2014) Trehalose metabolism–related genes in maize. J Plant Growth Regul 33(2):256–271

    Google Scholar 

  • Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20(5):325–332

    CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012) Arbuscular mycorrhiza improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58(4):186–191

    CAS  Google Scholar 

Download references

Acknowledgements

Prem Chandra would like to acknowledge the Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, and Dr. Enespa thanks the Department of Plant Pathology, Sri Mahesh Prasad Degree College, University of Lucknow, for assistance in the preparation of this chapter manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, P., Enespa, Singh, R. (2020). Soil Salinity and Its Alleviation Using Plant Growth–Promoting Fungi. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-48474-3_4

Download citation

Publish with us

Policies and ethics