Skip to main content

Combination of Phytochemicals with Nanotechnology for Targeting GI Cancer Therapy

  • Chapter
  • First Online:
Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers

Abstract

Gastrointestinal (GI) cancer is one of the lethal among all cancers which includes different types of cancers of the GI system, i.e., esophagus, liver, gallbladder, small intestine, pancreas, stomach, and bowel (large intestine or colon and rectum). Therefore, several efforts are being made to find more suitable anticancer agents based on synthetic and phytochemical approaches. There is the number of phytochemicals reported with prominent anticancer activities, but they include the number of limitations such as poor bioavailability, pitiable water solubility and low penetration into cells, contracted therapeutic index, and higher hepatic disposition. Therefore, this chapter discusses and summarizes the contemporary advances that have been made for the management of GI cancers in the field of nanotechnology with a combination of phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase-B

AuNPs:

Gold nanoparticles

Bcl-2:

B-cell lymphoma-2

BiNRs:

Bismuth oxide nanorods

COX-2:

Cyclooxygenase-2

DAS:

Diallyl sulfide

EAC:

Esophageal adenocarcinoma

ERK1/2, :

Extracellular signal-regulated kinases 1 and 2

ESCC:

Esophageal squamous cell carcinoma

FMNP:

Fluorescent magnetic nanoparticle

HCT :

Human colon carcinoma cells

HePG-2:

Hepatocellular carcinoma

HPMC:

Hydroxypropyl methylcellulose

HRT:

Hormone replacement therapy

MAPK:

Mitogen-activated protein kinase

MMP-9:

Matrix metallopeptidase-9

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MSCs:

Marked mesenchymal stem cells

NF-κB:

Nuclear factor kappa B

NIR:

Near-infrared

P13K :

Phosphatidylinositol 3-kinase

PEG:

Polyethylene glycol

PET:

Positron-emission tomography

PtNDs:

Platinum nanodendrites

PVA:

Polyvinyl alcohol

QDs:

Quantum dots

SCC:

Squamous cell carcinoma

SPECT :

Single-photon emission computed tomography

SPIONs :

Superparamagnetic iron oxide nanoparticles

STAT3:

Signal transducer and activator of transcription 3

TNF-𝛼:

Tumor necrosis factor-alpha

References

  1. Anand, P., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B., & Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–2116.

    CAS  Google Scholar 

  2. Abbas, Z., & Rehman, S. (2018). An overview of cancer treatment modalities. Neoplasma, 139.

    Google Scholar 

  3. Khan, N., Afaq, F., & Mukhtar, H. (2010). Lifestyle as risk factor for cancer: Evidence from human studies. Cancer Letters, 293(2), 133–143.

    CAS  Google Scholar 

  4. Parsa, N. (2012). Environmental factors inducing human cancers. Iranian Journal of Public Health, 41(11), 1.

    CAS  Google Scholar 

  5. Choudhury NAB, Selimuzzaman M, Bari MA, Wohab A, Hoque MB: Prevalence and identificationof socio-demographic factors and patterns of childhood cancer: A study in a Dhaka Shishu (Children) Hospital, Dhaka, Bangladesh.

    Google Scholar 

  6. Prasad, S., & Tyagi, A. K. (2015). Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterology Research and Practice, 2015.

    Google Scholar 

  7. Aikou, T., Kitagawa, Y., Kitajima, M., Uenosono, Y., Bilchik, A. J., Martinez, S. R., & Saha, S. (2006). Sentinel lymph node mapping with GI cancer. Cancer and Metastasis Reviews, 25(2), 269–277.

    Google Scholar 

  8. Kaye, P., Lindsay, D., Madhusudan, S., Vohra, R., Catton, J., Platt, C., & Ragunath, K. (2019). Upper GI biopsies for adenocarcinoma – How many biopsies should endoscopists take? Histopathology, 74(6), 959–963.

    Google Scholar 

  9. Lin, S. Y., Liu, J. D., Chang, H. C., Yeh, S. D., Lin, C. H., & Lee, W. S. (2002). Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis. Journal of Cellular Biochemistry, 84(3), 532–544.

    Google Scholar 

  10. Fujiki, H., Sueoka, E., Watanabe, T., & Suganuma, M. (2015). Primary cancer prevention by green tea, and tertiary cancer prevention by the combination of green tea catechins and anticancer compounds. Journal of Cancer Prevention, 20(1), 1.

    Google Scholar 

  11. Bharali, D. J., Siddiqui, I. A., Adhami, V. M., Chamcheu, J. C., Aldahmash, A. M., Mukhtar, H., & Mousa, S. A. (2011). Nanoparticle delivery of natural products in the prevention and treatment of cancers: Current status and future prospects. Cancers, 3(4), 4024–4045.

    CAS  Google Scholar 

  12. Lin, Y.-H., Chen, Z.-R., Lai, C.-H., Hsieh, C.-H., & Feng, C.-L. (2015). Active targeted nanoparticles for oral administration of gastric cancer therapy. Biomacromolecules, 16(9), 3021–3032.

    CAS  Google Scholar 

  13. Chai, J. (2018). Introductory chapter: Esophagus and esophageal cancer. In Esophageal Cancer and beyond. London: IntechOpen.

    Google Scholar 

  14. Crew, K. D., & Neugut, A. I. (2006). Epidemiology of gastric cancer. World journal of gastroenterology: WJG, 12(3), 354.

    Google Scholar 

  15. Brenner, H., Rothenbacher, D., & Arndt, V. (2009). Epidemiology of stomach cancer. In Cancer epidemiology (pp. 467–477). Berlin: Springer.

    Google Scholar 

  16. Rawla, P., & Barsouk, A. (2019). Epidemiology of gastric cancer: Global trends, risk factors and prevention. Przeglad Gastroenterologiczny, 14(1), 26.

    CAS  Google Scholar 

  17. Hundal, R., & Shaffer, E. A. (2014). Gallbladder cancer: Epidemiology and outcome. Clinical Epidemiology, 6, 99.

    Google Scholar 

  18. Miller, G., & Jarnagin, W. (2008). Gallbladder carcinoma. European Journal of Surgical Oncology (EJSO), 34(3), 306–312.

    CAS  Google Scholar 

  19. Lazcano-Ponce, E. C., Miquel, J., Muñoz, N., Herrero, R., Ferrecio, C., Wistuba, I. I., De Ruiz, P. A., Urista, G. A., & Nervi, F. (2001). Epidemiology and molecular pathology of gallbladder cancer. CA: a Cancer Journal for Clinicians, 51(6), 349–364.

    CAS  Google Scholar 

  20. Misra, S., Chaturvedi, A., Misra, N. C., & Sharma, I. D. (2003). Carcinoma of the gallbladder. The Lancet Oncology, 4(3), 167–176.

    Google Scholar 

  21. Kamath, A., Roudenko, A., Hecht, E., Sirlin, C., Chernyak, V., Fowler, K., & Mitchell, D. G. (2019). CT/MR LI-RADS 2018: Clinical implications and management recommendations. Abdominal Radiology, 44(4), 1306–1322.

    Google Scholar 

  22. Kamisawa, T., Wood, L. D., Itoi, T., & Takaori, K. (2016). Pancreatic cancer. The Lancet, 388(10039), 73–85.

    CAS  Google Scholar 

  23. Xiao, M., Wang, Y., & Gao, Y. (2013). Association between Helicobacter pylori infection and pancreatic cancer development: A meta-analysis. PLoS One, 8(9), e75559.

    CAS  Google Scholar 

  24. Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. The Lancet, 378(9791), 607–620.

    Google Scholar 

  25. Korman, M. U. (2002). Radiologic evaluation and staging of small intestine neoplasms. European Journal of Radiology, 42(3), 193–205.

    Google Scholar 

  26. Pan, S. Y., & Morrison, H. (2011). Epidemiology of cancer of the small intestine. World Journal of Gastrointestinal Oncology, 3(3), 33.

    Google Scholar 

  27. Liu, R., Zhang, W., Liu, Z.-Q., & Zhou, H.-H. (2017). Associating transcriptional modules with colon cancer survival through weighted gene co-expression network analysis. BMC Genomics, 18(1), 361.

    Google Scholar 

  28. Kumar, K. S., Sastry, N., Polaki, H., & Mishra, V. (2015). Colon cancer prevention through probiotics: An overview. Journal of Cancer Science and Therapy, 7(2), 081–092.

    Google Scholar 

  29. Song, Y.-X., Gao, P., Wang, Z.-N., Liang, J.-W., Sun, Z., Wang, M.-X., Dong, Y.-L., Wang, X.-F., & Xu, H.-M. (2012). Can the tumor deposits be counted as metastatic lymph nodes in the UICC TNM staging system for colorectal cancer? PLoS One, 7(3), e34087.

    CAS  Google Scholar 

  30. Zavoral, M., Suchanek, S., Zavada, F., Dusek, L., Muzik, J., Seifert, B., & Fric, P. (2009). Colorectal cancer screening in Europe. World Journal of Gastroenterology: WJG, 15(47), 5907.

    Google Scholar 

  31. Grulich, A. E., Poynten, I. M., Machalek, D. A., Jin, F., Templeton, D. J., & Hillman, R. J. (2012). The epidemiology of anal cancer. Sexual Health, 9(6), 504–508.

    Google Scholar 

  32. Patel, H. S., Silver, A. R., & Northover, J. M. (2007). Anal cancer in renal transplant patients. International Journal of Colorectal Disease, 22(1), 1–5.

    Google Scholar 

  33. Pidhorecky, I., Cheney, R. T., Kraybill, W. G., & Gibbs, J. F. (2000). Gastrointestinal stromal tumors: Current diagnosis, biologic behavior, and management. Annals of Surgical Oncology, 7(9), 705–712.

    CAS  Google Scholar 

  34. Sugarbaker, P., Cunliffe, W., Belliveau, J., De Bruijn, E., Graves, T., Mullins, R., Schlag, P., et al. (1991). Rationale for integrating early postoperative intraperitoneal chemotherapy into the surgical treatment of gastrointestinal cancer. In Proceedings of the 3rd international congress on neo-adjuvant chemotherapy (pp. 272–275). Berlin: Springer.

    Google Scholar 

  35. Bold, R. J., Ishizuka, J., & Townsend, C. M., Jr. (1996). Progress toward hormonal therapy of gastrointestinal cancer. Annals of Surgery, 223(1), 4.

    CAS  Google Scholar 

  36. Hazard, L., O’Connor, J., & Scaife, C. (2006). Role of radiation therapy in gastric adenocarcinoma. World journal of gastroenterology: WJG, 12(10), 1511.

    Google Scholar 

  37. Barbieri, F., Bajetto, A., Pattarozzi, A., Gatti, M., Würth, R., Thellung, S., Corsaro, A., Villa, V., Nizzari, M., & Florio, T. (2013). Peptide receptor targeting in cancer: The somatostatin paradigm. International Journal of Peptides, 2013.

    Google Scholar 

  38. Gründker, C., & Emons, G. (2017). The role of gonadotropin-releasing hormone in cancer cell proliferation and metastasis. Frontiers in Endocrinology, 8, 187.

    Google Scholar 

  39. Ognjenovic, L., Trajkovski, G., Gjoshev, S., Shumkovski, A., Dzambaz, D., Hadzi-Manchev, D., Volcevski, G., Fildishevski, I., Nikolova, D., & Petrushevska, G. (2018). HER2 positive gastric carcinomas and their clinico-pathological characteristics. Open Access Macedonian Journal of Medical Sciences, 6(7), 1187.

    Google Scholar 

  40. D'Incalci, M., Steward, W. P., & Gescher, A. J. (2005). Use of cancer chemopreventive phytochemicals as antineoplastic agents. The Lancet Oncology, 6(11), 899–904.

    CAS  Google Scholar 

  41. Larsen, C. A., & Dashwood, R. H. (2010). (−)-Epigallocatechin-3-gallate inhibits met signaling, proliferation, and invasiveness in human colon cancer cells. Archives of Biochemistry and Biophysics, 501(1), 52–57.

    CAS  Google Scholar 

  42. Hire, R. R., Srivastava, S., Davis, M. B., Konreddy, A. K., & Panda, D. (2017). Antiproliferative activity of crocin involves targeting of microtubules in breast cancer cells. Scientific Reports, 7, 44984.

    CAS  Google Scholar 

  43. Kashyap, D., Sharma, A., Sak, K., Tuli, H. S., Buttar, H. S., & Bishayee, A. (2018). Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sciences, 194, 75–87.

    CAS  Google Scholar 

  44. Zhang, Y., Chen, A. Y., Li, M., Chen, C., & Yao, Q. (2008). Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. Journal of Surgical Research, 148(1), 17–23.

    CAS  Google Scholar 

  45. Miller, E. C., Giovannucci, E., Erdman, J. J., Bahnson, R., Schwartz, S. J., & Clinton, S. K. (2002). Tomato products, lycopene, and prostate cancer risk. The Urologic Clinics of North America, 29(1), 83–93.

    Google Scholar 

  46. Zhang, C., Su, Z.-Y., Khor TO, Shu, L., & Kong, A.-N. T. (2013). Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochemical Pharmacology, 85(9), 1398–1404.

    CAS  Google Scholar 

  47. Spagnuolo, C., Russo, G. L., Orhan, I. E., Habtemariam, S., Daglia, M., Sureda, A., Nabavi, S. F., Devi, K. P., Loizzo, M. R., & Tundis, R. (2015). Genistein and cancer: Current status, challenges, and future directions. Advances in Nutrition, 6(4), 408–419.

    CAS  Google Scholar 

  48. Lee, S. H., Cekanova, M., & Baek, S. J. (2008). Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 47(3), 197–208.

    CAS  Google Scholar 

  49. Sinha, D., Sarkar, N., Biswas, J., & Bishayee, A. (2016). Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. In Seminars in cancer biology (pp. 209–232). Amsterdam: Elsevier.

    Google Scholar 

  50. Lim, S.-W., Loh, H.-S., Ting, K. N., Bradshaw, T. D., & Zeenathul, N. A. (2014). Antiproliferation and induction of caspase-8-dependent mitochondria-mediated apoptosis by β-tocotrienol in human lung and brain cancer cell lines. Biomedicine & Pharmacotherapy, 68(8), 1105–1115.

    CAS  Google Scholar 

  51. Pal, H. C., Sharma, S., Strickland, L. R., Agarwal, J., Athar, M., Elmets, C. A., & Afaq, F. (2013). Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways. PLoS One, 8(10), e77270.

    CAS  Google Scholar 

  52. Ciska, E., Verkerk, R., & Honke, J. (2009). Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3, 3′-diindolylmethane in fermented cabbage. Journal of Agricultural and Food Chemistry, 57(6), 2334–2338.

    CAS  Google Scholar 

  53. Hatkevich, T., Ramos, J., Santos-Sanchez, I., & Patel, Y. M. (2014). A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. Experimental Cell Research, 327(2), 331–339.

    CAS  Google Scholar 

  54. Kim, K. K., Singh, A. P., Singh, R. K., DeMartino, A., Brard, L., Vorsa, N., Lange, T. S., & Moore, R. G. (2012). Anti-angiogenic activity of cranberry proanthocyanidins and cytotoxic properties in ovarian cancer cells. International Journal of Oncology, 40(1), 227–235.

    CAS  Google Scholar 

  55. Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., Lewin, J. R., & Levenson, A. S. (2013). Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS One, 8(3), e57542.

    CAS  Google Scholar 

  56. Dechsupa, S., Kothan, S., Vergote, J., Leger, G., Martineau, A., Beranger, S., Kosanlavit, R., Moretti, J.-L., & Mankhetkorn, S. (2007). Quercetin, Siamois 1 and Siamois 2 induce apoptosis in human breast cancer MDA-mB-435 cells xenograft in vivo. Cancer Biology & Therapy, 6(1), 56–61.

    CAS  Google Scholar 

  57. Chen, M.-C., Hsu, S.-L., Lin, H., & Yang, T.-Y. (2014). Retinoic acid and cancer treatment. Biomedicine (Taipei), 4(4), 22–22.

    Google Scholar 

  58. Wing Ying Cheung, C., Gibbons, N., Wayne Johnson, D., & Lawrence Nicol, D. (2010). Silibinin-a promising new treatment for cancer. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 10(3), 186–195.

    Google Scholar 

  59. Girisa, S., Shabnam, B., Monisha, J., Fan, L., Halim, C. E., Arfuso, F., Ahn, K. S., Sethi, G., & Kunnumakkara, A. B. (2019). Potential of zerumbone as an anti-cancer agent. Molecules, 24(4), 734.

    CAS  Google Scholar 

  60. Puccinelli, M. T., & Stan, S. D. (2017). Dietary bioactive diallyl trisulfide in cancer prevention and treatment. International Journal of Molecular Sciences, 18(8), 1645.

    Google Scholar 

  61. Qu, D., Zhang, X., Sang, C., Zhou, Y., Ma, J., & Hui, L. (2019). Lappaconitine sulfate induces apoptosis in human colon cancer HT-29 cells and down-regulates PI3K/AKT/GSK3β signaling pathway. Medicinal Chemistry Research, 28(6), 907–916.

    CAS  Google Scholar 

  62. Zhang, H., Jiao, Y., Shi, C., Song, X., Chang, Y., Ren, Y., & Shi, X. (2018). Berbamine suppresses cell proliferation and promotes apoptosis in ovarian cancer partially via the inhibition of Wnt/β-catenin signaling. Acta Biochimica et Biophysica Sinica, 50(6), 532–539.

    CAS  Google Scholar 

  63. Maioli, E., Torricelli, C., & Valacchi, G. (2012). Rottlerin and cancer: Novel evidence and mechanisms. The Scientific World Journal, 2012.

    Google Scholar 

  64. Chen, J.-Y., Tang, Y.-A., Li, W.-S., Chiou, Y.-C., Shieh, J.-M., & Wang, Y.-C. (2013). A synthetic podophyllotoxin derivative exerts anti-cancer effects by inducing mitotic arrest and pro-apoptotic ER stress in lung cancer preclinical models. PLoS One, 8(4), e62082.

    CAS  Google Scholar 

  65. Payton-Stewart, F., Schoene, N. W., Kim, Y. S., Burow, M. E., Cleveland, T. E., Boue, S. M., & Wang, T. T. (2009). Molecular effects of soy phytoalexin glyceollins in human prostate cancer cells LNCaP. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 48(9), 862–871.

    CAS  Google Scholar 

  66. Witayasinthana, W., & Shotipruk, A. (2009). Recovery of anti-cancer damnacanthal from roots of Morinda citrifolia by microwave-assisted extraction. Separation Science and Technology, 44(12), 2942–2955.

    CAS  Google Scholar 

  67. Catalano, E. (2016). Role of phytochemicals in the chemoprevention of tumors. arXiv preprint arXiv, 160504519.

    Google Scholar 

  68. Tuorkey, M. J. (2015). Cancer therapy with phytochemicals: Present and future perspectives. Biomedical and Environmental Sciences, 28(11), 808–819.

    CAS  Google Scholar 

  69. Singh, D., Madhav, H., & Jaiswar, G. (2016). Effects on zinc oxide on polyacrylic acid: A core–shell nanoparticles. Science and Engineering Applications, 1, 36–39.

    Google Scholar 

  70. Madhav, H., Singh, N., Singh, P., & Jaiswar, G. (2017). Biological synthesis of nanoparticles and their applications: A review. Agra University Journal of Research: Science, 1(2), 25–30.

    Google Scholar 

  71. Singh, N., Madhav, H., Yadav, S., & Jaiswar, G. (2018). Critical evaluation of thermal, optical and morphological properties of V, S and Dy doped-ZnO/PVDF/functionalized-PMMA blended Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 28(5), 2121–2130.

    CAS  Google Scholar 

  72. Madhav, H., Singh, N., & Jaiswar, G. (2019). Thermoset, bioactive, metal–polymer composites for medical applications. In Materials for biomedical engineering (pp. 105–143). Amsterdam: Elsevier.

    Google Scholar 

  73. Madhav, H., Singh, P., Singh, N., & Jaiswar, G. (2017). Evaluations of thermal and antibacterial properties of nanocomposites of functionalized poly (methyl methacrylate) with different amino containing groups. Macromolecular Research, 25(7), 689–696.

    CAS  Google Scholar 

  74. Singh, N., Madhav, H., Yadav, S., & Jaiswar, G. (2019). Impact of vanadium-, sulfur-, and dysprosium-doped zinc oxide nanoparticles on various properties of PVDF/functionalized-PMMA blend nanocomposites: Structural, optical, and morphological studies. Journal of Applied Polymer Science, 136(9), 47116.

    Google Scholar 

  75. Rathore, S., Madhav, H., & Jaiswar, G. (2019). Efficient nano-filler for the phase transformation in polyvinylidene fluoride nanocomposites by using nanoparticles of stannous sulfate. Materials Research Innovations, 23(4), 183–190.

    CAS  Google Scholar 

  76. Iravani, S., & Varma, R. S. (2019). Plant-derived edible nanoparticles and miRNAs: Emerging frontier for therapeutics and targeted drug-delivery. ACS Sustainable Chemistry & Engineering, 7(9), 8055–8069.

    CAS  Google Scholar 

  77. Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH: Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxidative medicine and cellular longevity 2016, 2016.

    Google Scholar 

  78. Ma, Y.-Y., Jin, K.-T., Wang, S.-B., Wang, H.-J., Tong, X.-M., Huang, D.-S., & Mou, X.-Z. (2017). Molecular imaging of cancer with nanoparticle-based theranostic probes. Contrast Media & Molecular Imaging, 2017.

    Google Scholar 

  79. Bazak, R., Houri, M., El Achy, S., Kamel, S., & Refaat, T. (2015). Cancer active targeting by nanoparticles: A comprehensive review of literature. Journal of Cancer Research and Clinical Oncology, 141(5), 769–784.

    CAS  Google Scholar 

  80. Wiwanitkit, V. (2006). Glomerular pore size corresponding to albumin molecular size, an explanation for underlying structural pathology leading to albuminuria at nanolevel. Renal Failure, 28(1), 101–101.

    Google Scholar 

  81. Cheng, Z., Yan, X., Sun, X., Shen, B., & Gambhir, S. S. (2016). Tumor molecular imaging with nanoparticles. Engineering, 2(1), 132–140.

    CAS  Google Scholar 

  82. Pericleous, P., Gazouli, M., Lyberopoulou, A., Rizos, S., Nikiteas, N., & Efstathopoulos, E. P. (2012). Quantum dots hold promise for early cancer imaging and detection. International Journal of Cancer, 131(3), 519–528.

    CAS  Google Scholar 

  83. Fang, M., Peng, C.-W., Pang, D.-W., & Li, Y. (2012). Quantum dots for cancer research: Current status, remaining issues, and future perspectives. Cancer Biology & Medicine, 9(3), 151.

    CAS  Google Scholar 

  84. Gao, J., Chen, K., Luong, R., Bouley, D. M., Mao, H., Qiao, T., Gambhir, S. S., & Cheng, Z. (2011). A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Letters, 12(1), 281–286.

    Google Scholar 

  85. Geng, X. F., Fang, M., Liu, S. P., & Li, Y. (2016). Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay. Molecular Medicine Reports, 14(4), 3007–3012.

    CAS  Google Scholar 

  86. Liu, X., Braun, G. B., Qin, M., Ruoslahti, E., & Sugahara, K. N. (2017). In vivo cation exchange in quantum dots for tumor-specific imaging. Nature Communications, 8(1), 343.

    Google Scholar 

  87. Brunetti, J., Riolo, G., Gentile, M., Bernini, A., Paccagnini, E., Falciani, C., Lozzi, L., Scali, S., Depau, L., & Pini, A. (2018). Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging. Journal of Nanobiotechnology, 16(1), 21.

    Google Scholar 

  88. Silva, C. O., Pinho, J. O., Lopes, J. M., Almeida, A. J., Gaspar, M. M., & Reis, C. (2019). Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics, 11(1), 22.

    CAS  Google Scholar 

  89. Wang, H., Li, X., Tse, B. W.-C., Yang, H., Thorling, C. A., Liu, Y., Touraud, M., Chouane, J. B., Liu, X., & Roberts, M. S. (2018). Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics, 8(5), 1227.

    CAS  Google Scholar 

  90. Li, S., Johnson, J., Peck, A., & Xie, Q. (2017). Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. Journal of Translational Medicine, 15(1), 18.

    Google Scholar 

  91. Chansaenpak, K., Tanjindaprateep, S., Chaicharoenaudomrung, N., Weeranantanapan, O., Noisa, P., & Kamkaew, A. (2018). Aza-BODIPY based polymeric nanoparticles for cancer cell imaging. RSC Advances, 8(69), 39248–39255.

    CAS  Google Scholar 

  92. Yang, Y., & Cui, D. (2017). Upconversion nanoparticles for gastric cancer targeted imaging and therapy. In Gastric cancer prewarning and early diagnosis system (pp. 239–270). Berlin: Springer.

    Google Scholar 

  93. Thomas, R., Park, I.-K., & Jeong, Y. Y. (2013). Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. International Journal of Molecular Sciences, 14(8), 15910–15930.

    Google Scholar 

  94. Schleich, N., Sibret, P., Danhier, P., Ucakar, B., Laurent, S., Muller, R. N., Jérôme, C., Gallez, B., Préat, V., & Danhier, F. (2013). Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. International Journal of Pharmaceutics, 447(1), 94–101.

    CAS  Google Scholar 

  95. Ruan, J., Ji, J., Song, H., Qian, Q., Wang, K., Wang, C., & Cui, D. (2012). Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer. Nanoscale Research Letters, 7, 309.

    Google Scholar 

  96. Deserno, W. M. L. L. G., Harisinghani, M. G., Taupitz, M., Jager, G. J., Witjes, J. A., Mulders, P. F., CAHVD, K., Kaufmann, D., & Barentsz, J. O. (2004). Urinary bladder cancer: Preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology, 233(2), 449–456.

    Google Scholar 

  97. Hudgins, P. A., Anzai, Y., Morris, M. R., & Lucas, M. A. (2002). Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement agent for imaging lymph nodes: A phase 2 dose study. American Journal of Neuroradiology, 23(4), 649–656.

    Google Scholar 

  98. Jalalian, S. H., Taghdisi, S. M., Hamedani, N. S., Kalat, S. A. M., Lavaee, P., ZandKarimi, M., Ghows, N., Jaafari, M. R., Naghibi, S., & Danesh, N. M. (2013). Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. European Journal of Pharmaceutical Sciences, 50(2), 191–197.

    CAS  Google Scholar 

  99. Cho, Y.-S., Yoon, T.-J., Jang, E.-S., Hong, K. S., Lee, S. Y., Kim, O. R., Park, C., Kim, Y.-J., Yi, G.-C., & Chang, K. (2010). Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer Letters, 299(1), 63–71.

    CAS  Google Scholar 

  100. Xu, X., An, H., Zhang, D., Tao, H., Dou, Y., Li, X., Huang, J., & Zhang, J. (2019). A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Science Advances, 5(1), eaat2953.

    Google Scholar 

  101. Sasaki, Y., Nishina, T., Yasui, H., Goto, M., Muro, K., Tsuji, A., Koizumi, W., Toh, Y., Hara, T., & Miyata, Y. (2014). Phase II trial of nanoparticle albumin-bound paclitaxel as second-line chemotherapy for unresectable or recurrent gastric cancer. Cancer Science, 105(7), 812–817.

    CAS  Google Scholar 

  102. Li, X., Lu, X., Xu, H., Zhu, Z., Yin, H., Qian, X., Li, R., Jiang, X., & Liu, B. (2011). Paclitaxel/tetrandrine coloaded nanoparticles effectively promote the apoptosis of gastric cancer cells based on “oxidation therapy”. Molecular Pharmaceutics, 9(2), 222–229.

    Google Scholar 

  103. Sun, Z., Song, X., Li, X., Su, T., Qi, S., Qiao, R., Wang, F., Huan, Y., Yang, W., & Wang, J. (2014). In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale, 6(23), 14343–14353.

    CAS  Google Scholar 

  104. Zhang, Z., & Feng, S.-S. (2006). Self-assembled nanoparticles of poly (lactide)–vitamin E TPGS copolymers for oral chemotherapy. International Journal of Pharmaceutics, 324(2), 191–198.

    CAS  Google Scholar 

  105. Wu, F.-l., Li, R.-T., Yang, M., Yue, G.-F., Wang, H.-Y., Liu, Q., Cui, F.-B., Wu, P.-Y., Ding, H., & Yu, L.-X. (2015). Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2′-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Letters, 363(1), 7–16.

    CAS  Google Scholar 

  106. Li, K., Dai, Y., Chen, W., Yu, K., Xiao, G., Richardson, J. J., Huang, W., Guo, J., Liao, X., & Shi, B. (2019). Self-assembled metal-phenolic nanoparticles for enhanced synergistic combination therapy against colon cancer. Advanced Biosystems, 3(2), 1800241.

    Google Scholar 

  107. Rashid, R. A., Abidin, S. Z., Anuar, M. A. K., Tominaga, T., Akasaka, H., Sasaki, R., Kie, K., Razak, K. A., Pham, B. T., & Hawkett, B. S. (2019). Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OpenNano, 4, 100027.

    Google Scholar 

  108. Karuppaiya, P., Satheeshkumar, E., & Tsay, H. S. (2019). Biogenic synthesis of silver nanoparticles using rhizome extract of Dysosma pleiantha and its antiproliferative effect against breast and human gastric cancer cells. Molecular Biology Reports, 1–10.

    Google Scholar 

  109. Al-Radadi, N. S. (2019). Green synthesis of platinum nanoparticles using Saudi’s dates extract and their usage on the cancer cell treatment. Arabian Journal of Chemistry, 12(3), 330–349.

    CAS  Google Scholar 

  110. Jain, A., Jain, R., Jain, S., Khatik, R., & Veer Kohli, D. (2019). Minicapsules encapsulating nanoparticles for targeting, apoptosis induction and treatment of colon cancer. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1085–1093.

    CAS  Google Scholar 

  111. Cordani, M., & Somoza, Á. (2019). Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment. Cellular and Molecular Life Sciences, 76(7), 1215–1242.

    CAS  Google Scholar 

  112. Khan, H., Ullah, H., Martorell, M., Valdes, S. E., Belwal, T., Tejada, S., Sureda, A., & Kamal, M. A. (2019). Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Seminars in Cancer Biology.

    Google Scholar 

  113. Sutradhar, K. B., & Amin, M. L. (2014). Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 12.

    Google Scholar 

  114. Dadwal, A., Baldi, A., & Kumar Narang, R. (2018). Nanoparticles as carriers for drug delivery in cancer. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 295–305.

    CAS  Google Scholar 

  115. Liyanage, P. Y., Hettiarachchi, S. D., Zhou, Y., Ouhtit, A., Seven, E. S., Oztan, C. Y., Celik, E., & Leblanc, R. M. (2019). Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1871(2), 419–433.

    CAS  Google Scholar 

  116. Lombardo, D., Kiselev, M. A., & Caccamo, M. T. (2019). Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019, 26.

    Google Scholar 

  117. Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3, 7–7.

    Google Scholar 

  118. Li, Z., Tan, S., Li, S., Shen, Q., & Wang, K. (2017). Cancer drug delivery in the nano era: An overview and perspectives. Oncology Reports, 38(2), 611–624.

    CAS  Google Scholar 

  119. Suri, S. S., Fenniri, H., & Singh, B. (2007). Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology, 2(1), 16.

    Google Scholar 

  120. Kato, K., Chin, K., Yoshikawa, T., Yamaguchi, K., Tsuji, Y., Esaki, T., Sakai, K., Kimura, M., Hamaguchi, T., & Shimada, Y. (2012). Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investigational New Drugs, 30(4), 1621–1627.

    CAS  Google Scholar 

  121. Xie, J., Yang, Z., Zhou, C., Zhu, J., Lee, R. J., & Teng, L. (2016). Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnology Advances, 34(4), 343–353.

    CAS  Google Scholar 

  122. Arora, D., Saneja, A., & Jaglan, S. (2019). Cyclodextrin-based delivery systems for dietary pharmaceuticals. Environmental Chemistry Letters, 1–8.

    Google Scholar 

  123. Thipe, V. C., Amiri, K. P., Bloebaum, P., Karikachery, A. R., Khoobchandani, M., Katti, K. K., Jurisson, S. S., & Katti, K. V. (2019). Development of resveratrol-conjugated gold nanoparticles: Interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. International Journal of Nanomedicine, 14, 4413.

    CAS  Google Scholar 

  124. Brian, M. O., & Selvi, S. (2019). Cytotoxic effects of Ceiba pentandra L. mediated silver nanoparticles on HCT-116 colon cancer cell lines through ROS generation and cell membrane damage. International Journal of Research in Pharmaceutical Sciences, 10(4), 3236–3243.

    CAS  Google Scholar 

  125. Elbialy, N. S., Abdelfatah, E. A., & Khalil, W. A. (2019). Antitumor activity of curcumin-green synthesized gold nanoparticles: In vitro study. BioNanoScience, 1–8.

    Google Scholar 

  126. Mariadoss, A. V. A., Vinayagam, R., Xu, B., Venkatachalam, K., Sankaran, V., Vijayakumar, S., Bakthavatsalam, S. R., Mohamed, S. A., & David, E. (2019). Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis. Chemico-Biological Interactions, 308, 11–19.

    Google Scholar 

  127. Zhou, X., Liu, Y., Huang, Y., Ma, Y., Lv, J., & Xiao, B. (2019). Mucus-penetrating polymeric nanoparticles for oral delivery of curcumin to inflamed colon tissue. Journal of Drug Delivery Science and Technology, 52, 157–164.

    CAS  Google Scholar 

  128. Hajizadeh, M. R., Parvaz, N., Barani, M., Khoshdel, A., Fahmidehkar, M. A., Mahmoodi, M., & Torkzadeh-Mahani, M. (2019). Diosgenin-loaded niosome as an effective phytochemical nanocarrier: Physicochemical characterization, loading efficiency, and cytotoxicity assay. DARU Journal of Pharmaceutical Sciences, 1–11.

    Google Scholar 

  129. Anter, H. M., Hashim, I. I. A., Awadin, W., & Meshali, M. M. (2019). Novel chitosan oligosaccharide-based nanoparticles for gastric mucosal administration of the phytochemical “apocynin”. International Journal of Nanomedicine, 14, 4911.

    CAS  Google Scholar 

  130. Maity, R., Chatterjee, M., Banerjee, A., Das, A., Mishra, R., Mazumder, S., & Chanda, N. (2019). Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Materials Science and Engineering: C, 109909.

    Google Scholar 

  131. Gao, J., Fan, K., Jin, Y., Zhao, L., Wang, Q., Tang, Y., Xu, H., Liu, Z., Wang, S., & Lin, J. (2019). PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. European Journal of Pharmaceutical Sciences, 140, 105070.

    CAS  Google Scholar 

  132. Sweety, J. P., Sowparani, S., Mahalakshmi, P., Selvasudha, N., Yamini, D., Geetha, K., & Ruckmani, K. (2020). Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment – insight into thymoquinone’s improved physicochemical properties. Journal of Drug Delivery Science and Technology, 55, 101334.

    Google Scholar 

  133. Saraf, A., Dubey, N., Dubey, N., & Sharma, M. (2019). Box Behnken design based development of curcumin loaded Eudragit S100 nanoparticles for site-spcific delivery in colon cancer. Research Journal of Pharmacy and Technology, 12(8), 3672–3678.

    Google Scholar 

  134. Udompornmongkol, P., & Chiang, B.-H. (2015). Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. Journal of Biomaterials Applications, 30(5), 537–546.

    CAS  Google Scholar 

  135. Anitha, A., Sreeranganathan, M., Chennazhi, K. P., Lakshmanan, V.-K., & Jayakumar, R. (2014). In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N, O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. European Journal of Pharmaceutics and Biopharmaceutics, 88(1), 238–251.

    CAS  Google Scholar 

  136. Huang, W., Wang, X., Shi, C., Guo, D., Xu, G., Wang, L., Bodman, A., & Luo, J. (2015). Fine-tuning vitamin E-containing telodendrimers for efficient delivery of gambogic acid in colon cancer treatment. Molecular Pharmaceutics, 12(4), 1216–1229.

    CAS  Google Scholar 

  137. Lotfi-Attari, J., Pilehvar-Soltanahmadi, Y., Dadashpour, M., Alipour, S., Farajzadeh, R., Javidfar, S., & Zarghami, N. (2017). Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutrition and Cancer, 69(8), 1290–1299.

    CAS  Google Scholar 

  138. Vimala, K., Sundarraj, S., Paulpandi, M., Vengatesan, S., & Kannan, S. (2014). Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochemistry, 49(1), 160–172.

    CAS  Google Scholar 

  139. Prajakta, D., Ratnesh, J., Chandan, K., Suresh, S., Grace, S., Meera, V., & Vandana, P. (2009). Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. Journal of Biomedical Nanotechnology, 5(5), 445–455.

    CAS  Google Scholar 

  140. Han, X., Jiang, X., Guo, L., Wang, Y., Veeraraghavan, V. P., Krishna Mohan, S., Wang, Z., & Cao, D. (2019). Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3577–3584.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, H., Alam, M. (2020). Combination of Phytochemicals with Nanotechnology for Targeting GI Cancer Therapy. In: Nagaraju, G.P. (eds) Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-48405-7_7

Download citation

Publish with us

Policies and ethics