Abstract
Gastrointestinal (GI) cancer is one of the lethal among all cancers which includes different types of cancers of the GI system, i.e., esophagus, liver, gallbladder, small intestine, pancreas, stomach, and bowel (large intestine or colon and rectum). Therefore, several efforts are being made to find more suitable anticancer agents based on synthetic and phytochemical approaches. There is the number of phytochemicals reported with prominent anticancer activities, but they include the number of limitations such as poor bioavailability, pitiable water solubility and low penetration into cells, contracted therapeutic index, and higher hepatic disposition. Therefore, this chapter discusses and summarizes the contemporary advances that have been made for the management of GI cancers in the field of nanotechnology with a combination of phytochemicals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- Akt:
-
Protein kinase-B
- AuNPs:
-
Gold nanoparticles
- Bcl-2:
-
B-cell lymphoma-2
- BiNRs:
-
Bismuth oxide nanorods
- COX-2:
-
Cyclooxygenase-2
- DAS:
-
Diallyl sulfide
- EAC:
-
Esophageal adenocarcinoma
- ERK1/2, :
-
Extracellular signal-regulated kinases 1 and 2
- ESCC:
-
Esophageal squamous cell carcinoma
- FMNP:
-
Fluorescent magnetic nanoparticle
- HCT :
-
Human colon carcinoma cells
- HePG-2:
-
Hepatocellular carcinoma
- HPMC:
-
Hydroxypropyl methylcellulose
- HRT:
-
Hormone replacement therapy
- MAPK:
-
Mitogen-activated protein kinase
- MMP-9:
-
Matrix metallopeptidase-9
- MRI:
-
Magnetic resonance imaging
- MRS:
-
Magnetic resonance spectroscopy
- MSCs:
-
Marked mesenchymal stem cells
- NF-κB:
-
Nuclear factor kappa B
- NIR:
-
Near-infrared
- P13K :
-
Phosphatidylinositol 3-kinase
- PEG:
-
Polyethylene glycol
- PET:
-
Positron-emission tomography
- PtNDs:
-
Platinum nanodendrites
- PVA:
-
Polyvinyl alcohol
- QDs:
-
Quantum dots
- SCC:
-
Squamous cell carcinoma
- SPECT :
-
Single-photon emission computed tomography
- SPIONs :
-
Superparamagnetic iron oxide nanoparticles
- STAT3:
-
Signal transducer and activator of transcription 3
- TNF-𝛼:
-
Tumor necrosis factor-alpha
References
Anand, P., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B., & Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–2116.
Abbas, Z., & Rehman, S. (2018). An overview of cancer treatment modalities. Neoplasma, 139.
Khan, N., Afaq, F., & Mukhtar, H. (2010). Lifestyle as risk factor for cancer: Evidence from human studies. Cancer Letters, 293(2), 133–143.
Parsa, N. (2012). Environmental factors inducing human cancers. Iranian Journal of Public Health, 41(11), 1.
Choudhury NAB, Selimuzzaman M, Bari MA, Wohab A, Hoque MB: Prevalence and identificationof socio-demographic factors and patterns of childhood cancer: A study in a Dhaka Shishu (Children) Hospital, Dhaka, Bangladesh.
Prasad, S., & Tyagi, A. K. (2015). Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterology Research and Practice, 2015.
Aikou, T., Kitagawa, Y., Kitajima, M., Uenosono, Y., Bilchik, A. J., Martinez, S. R., & Saha, S. (2006). Sentinel lymph node mapping with GI cancer. Cancer and Metastasis Reviews, 25(2), 269–277.
Kaye, P., Lindsay, D., Madhusudan, S., Vohra, R., Catton, J., Platt, C., & Ragunath, K. (2019). Upper GI biopsies for adenocarcinoma – How many biopsies should endoscopists take? Histopathology, 74(6), 959–963.
Lin, S. Y., Liu, J. D., Chang, H. C., Yeh, S. D., Lin, C. H., & Lee, W. S. (2002). Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis. Journal of Cellular Biochemistry, 84(3), 532–544.
Fujiki, H., Sueoka, E., Watanabe, T., & Suganuma, M. (2015). Primary cancer prevention by green tea, and tertiary cancer prevention by the combination of green tea catechins and anticancer compounds. Journal of Cancer Prevention, 20(1), 1.
Bharali, D. J., Siddiqui, I. A., Adhami, V. M., Chamcheu, J. C., Aldahmash, A. M., Mukhtar, H., & Mousa, S. A. (2011). Nanoparticle delivery of natural products in the prevention and treatment of cancers: Current status and future prospects. Cancers, 3(4), 4024–4045.
Lin, Y.-H., Chen, Z.-R., Lai, C.-H., Hsieh, C.-H., & Feng, C.-L. (2015). Active targeted nanoparticles for oral administration of gastric cancer therapy. Biomacromolecules, 16(9), 3021–3032.
Chai, J. (2018). Introductory chapter: Esophagus and esophageal cancer. In Esophageal Cancer and beyond. London: IntechOpen.
Crew, K. D., & Neugut, A. I. (2006). Epidemiology of gastric cancer. World journal of gastroenterology: WJG, 12(3), 354.
Brenner, H., Rothenbacher, D., & Arndt, V. (2009). Epidemiology of stomach cancer. In Cancer epidemiology (pp. 467–477). Berlin: Springer.
Rawla, P., & Barsouk, A. (2019). Epidemiology of gastric cancer: Global trends, risk factors and prevention. Przeglad Gastroenterologiczny, 14(1), 26.
Hundal, R., & Shaffer, E. A. (2014). Gallbladder cancer: Epidemiology and outcome. Clinical Epidemiology, 6, 99.
Miller, G., & Jarnagin, W. (2008). Gallbladder carcinoma. European Journal of Surgical Oncology (EJSO), 34(3), 306–312.
Lazcano-Ponce, E. C., Miquel, J., Muñoz, N., Herrero, R., Ferrecio, C., Wistuba, I. I., De Ruiz, P. A., Urista, G. A., & Nervi, F. (2001). Epidemiology and molecular pathology of gallbladder cancer. CA: a Cancer Journal for Clinicians, 51(6), 349–364.
Misra, S., Chaturvedi, A., Misra, N. C., & Sharma, I. D. (2003). Carcinoma of the gallbladder. The Lancet Oncology, 4(3), 167–176.
Kamath, A., Roudenko, A., Hecht, E., Sirlin, C., Chernyak, V., Fowler, K., & Mitchell, D. G. (2019). CT/MR LI-RADS 2018: Clinical implications and management recommendations. Abdominal Radiology, 44(4), 1306–1322.
Kamisawa, T., Wood, L. D., Itoi, T., & Takaori, K. (2016). Pancreatic cancer. The Lancet, 388(10039), 73–85.
Xiao, M., Wang, Y., & Gao, Y. (2013). Association between Helicobacter pylori infection and pancreatic cancer development: A meta-analysis. PLoS One, 8(9), e75559.
Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. The Lancet, 378(9791), 607–620.
Korman, M. U. (2002). Radiologic evaluation and staging of small intestine neoplasms. European Journal of Radiology, 42(3), 193–205.
Pan, S. Y., & Morrison, H. (2011). Epidemiology of cancer of the small intestine. World Journal of Gastrointestinal Oncology, 3(3), 33.
Liu, R., Zhang, W., Liu, Z.-Q., & Zhou, H.-H. (2017). Associating transcriptional modules with colon cancer survival through weighted gene co-expression network analysis. BMC Genomics, 18(1), 361.
Kumar, K. S., Sastry, N., Polaki, H., & Mishra, V. (2015). Colon cancer prevention through probiotics: An overview. Journal of Cancer Science and Therapy, 7(2), 081–092.
Song, Y.-X., Gao, P., Wang, Z.-N., Liang, J.-W., Sun, Z., Wang, M.-X., Dong, Y.-L., Wang, X.-F., & Xu, H.-M. (2012). Can the tumor deposits be counted as metastatic lymph nodes in the UICC TNM staging system for colorectal cancer? PLoS One, 7(3), e34087.
Zavoral, M., Suchanek, S., Zavada, F., Dusek, L., Muzik, J., Seifert, B., & Fric, P. (2009). Colorectal cancer screening in Europe. World Journal of Gastroenterology: WJG, 15(47), 5907.
Grulich, A. E., Poynten, I. M., Machalek, D. A., Jin, F., Templeton, D. J., & Hillman, R. J. (2012). The epidemiology of anal cancer. Sexual Health, 9(6), 504–508.
Patel, H. S., Silver, A. R., & Northover, J. M. (2007). Anal cancer in renal transplant patients. International Journal of Colorectal Disease, 22(1), 1–5.
Pidhorecky, I., Cheney, R. T., Kraybill, W. G., & Gibbs, J. F. (2000). Gastrointestinal stromal tumors: Current diagnosis, biologic behavior, and management. Annals of Surgical Oncology, 7(9), 705–712.
Sugarbaker, P., Cunliffe, W., Belliveau, J., De Bruijn, E., Graves, T., Mullins, R., Schlag, P., et al. (1991). Rationale for integrating early postoperative intraperitoneal chemotherapy into the surgical treatment of gastrointestinal cancer. In Proceedings of the 3rd international congress on neo-adjuvant chemotherapy (pp. 272–275). Berlin: Springer.
Bold, R. J., Ishizuka, J., & Townsend, C. M., Jr. (1996). Progress toward hormonal therapy of gastrointestinal cancer. Annals of Surgery, 223(1), 4.
Hazard, L., O’Connor, J., & Scaife, C. (2006). Role of radiation therapy in gastric adenocarcinoma. World journal of gastroenterology: WJG, 12(10), 1511.
Barbieri, F., Bajetto, A., Pattarozzi, A., Gatti, M., Würth, R., Thellung, S., Corsaro, A., Villa, V., Nizzari, M., & Florio, T. (2013). Peptide receptor targeting in cancer: The somatostatin paradigm. International Journal of Peptides, 2013.
Gründker, C., & Emons, G. (2017). The role of gonadotropin-releasing hormone in cancer cell proliferation and metastasis. Frontiers in Endocrinology, 8, 187.
Ognjenovic, L., Trajkovski, G., Gjoshev, S., Shumkovski, A., Dzambaz, D., Hadzi-Manchev, D., Volcevski, G., Fildishevski, I., Nikolova, D., & Petrushevska, G. (2018). HER2 positive gastric carcinomas and their clinico-pathological characteristics. Open Access Macedonian Journal of Medical Sciences, 6(7), 1187.
D'Incalci, M., Steward, W. P., & Gescher, A. J. (2005). Use of cancer chemopreventive phytochemicals as antineoplastic agents. The Lancet Oncology, 6(11), 899–904.
Larsen, C. A., & Dashwood, R. H. (2010). (−)-Epigallocatechin-3-gallate inhibits met signaling, proliferation, and invasiveness in human colon cancer cells. Archives of Biochemistry and Biophysics, 501(1), 52–57.
Hire, R. R., Srivastava, S., Davis, M. B., Konreddy, A. K., & Panda, D. (2017). Antiproliferative activity of crocin involves targeting of microtubules in breast cancer cells. Scientific Reports, 7, 44984.
Kashyap, D., Sharma, A., Sak, K., Tuli, H. S., Buttar, H. S., & Bishayee, A. (2018). Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sciences, 194, 75–87.
Zhang, Y., Chen, A. Y., Li, M., Chen, C., & Yao, Q. (2008). Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. Journal of Surgical Research, 148(1), 17–23.
Miller, E. C., Giovannucci, E., Erdman, J. J., Bahnson, R., Schwartz, S. J., & Clinton, S. K. (2002). Tomato products, lycopene, and prostate cancer risk. The Urologic Clinics of North America, 29(1), 83–93.
Zhang, C., Su, Z.-Y., Khor TO, Shu, L., & Kong, A.-N. T. (2013). Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochemical Pharmacology, 85(9), 1398–1404.
Spagnuolo, C., Russo, G. L., Orhan, I. E., Habtemariam, S., Daglia, M., Sureda, A., Nabavi, S. F., Devi, K. P., Loizzo, M. R., & Tundis, R. (2015). Genistein and cancer: Current status, challenges, and future directions. Advances in Nutrition, 6(4), 408–419.
Lee, S. H., Cekanova, M., & Baek, S. J. (2008). Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 47(3), 197–208.
Sinha, D., Sarkar, N., Biswas, J., & Bishayee, A. (2016). Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. In Seminars in cancer biology (pp. 209–232). Amsterdam: Elsevier.
Lim, S.-W., Loh, H.-S., Ting, K. N., Bradshaw, T. D., & Zeenathul, N. A. (2014). Antiproliferation and induction of caspase-8-dependent mitochondria-mediated apoptosis by β-tocotrienol in human lung and brain cancer cell lines. Biomedicine & Pharmacotherapy, 68(8), 1105–1115.
Pal, H. C., Sharma, S., Strickland, L. R., Agarwal, J., Athar, M., Elmets, C. A., & Afaq, F. (2013). Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways. PLoS One, 8(10), e77270.
Ciska, E., Verkerk, R., & Honke, J. (2009). Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3, 3′-diindolylmethane in fermented cabbage. Journal of Agricultural and Food Chemistry, 57(6), 2334–2338.
Hatkevich, T., Ramos, J., Santos-Sanchez, I., & Patel, Y. M. (2014). A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. Experimental Cell Research, 327(2), 331–339.
Kim, K. K., Singh, A. P., Singh, R. K., DeMartino, A., Brard, L., Vorsa, N., Lange, T. S., & Moore, R. G. (2012). Anti-angiogenic activity of cranberry proanthocyanidins and cytotoxic properties in ovarian cancer cells. International Journal of Oncology, 40(1), 227–235.
Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., Lewin, J. R., & Levenson, A. S. (2013). Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS One, 8(3), e57542.
Dechsupa, S., Kothan, S., Vergote, J., Leger, G., Martineau, A., Beranger, S., Kosanlavit, R., Moretti, J.-L., & Mankhetkorn, S. (2007). Quercetin, Siamois 1 and Siamois 2 induce apoptosis in human breast cancer MDA-mB-435 cells xenograft in vivo. Cancer Biology & Therapy, 6(1), 56–61.
Chen, M.-C., Hsu, S.-L., Lin, H., & Yang, T.-Y. (2014). Retinoic acid and cancer treatment. Biomedicine (Taipei), 4(4), 22–22.
Wing Ying Cheung, C., Gibbons, N., Wayne Johnson, D., & Lawrence Nicol, D. (2010). Silibinin-a promising new treatment for cancer. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 10(3), 186–195.
Girisa, S., Shabnam, B., Monisha, J., Fan, L., Halim, C. E., Arfuso, F., Ahn, K. S., Sethi, G., & Kunnumakkara, A. B. (2019). Potential of zerumbone as an anti-cancer agent. Molecules, 24(4), 734.
Puccinelli, M. T., & Stan, S. D. (2017). Dietary bioactive diallyl trisulfide in cancer prevention and treatment. International Journal of Molecular Sciences, 18(8), 1645.
Qu, D., Zhang, X., Sang, C., Zhou, Y., Ma, J., & Hui, L. (2019). Lappaconitine sulfate induces apoptosis in human colon cancer HT-29 cells and down-regulates PI3K/AKT/GSK3β signaling pathway. Medicinal Chemistry Research, 28(6), 907–916.
Zhang, H., Jiao, Y., Shi, C., Song, X., Chang, Y., Ren, Y., & Shi, X. (2018). Berbamine suppresses cell proliferation and promotes apoptosis in ovarian cancer partially via the inhibition of Wnt/β-catenin signaling. Acta Biochimica et Biophysica Sinica, 50(6), 532–539.
Maioli, E., Torricelli, C., & Valacchi, G. (2012). Rottlerin and cancer: Novel evidence and mechanisms. The Scientific World Journal, 2012.
Chen, J.-Y., Tang, Y.-A., Li, W.-S., Chiou, Y.-C., Shieh, J.-M., & Wang, Y.-C. (2013). A synthetic podophyllotoxin derivative exerts anti-cancer effects by inducing mitotic arrest and pro-apoptotic ER stress in lung cancer preclinical models. PLoS One, 8(4), e62082.
Payton-Stewart, F., Schoene, N. W., Kim, Y. S., Burow, M. E., Cleveland, T. E., Boue, S. M., & Wang, T. T. (2009). Molecular effects of soy phytoalexin glyceollins in human prostate cancer cells LNCaP. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 48(9), 862–871.
Witayasinthana, W., & Shotipruk, A. (2009). Recovery of anti-cancer damnacanthal from roots of Morinda citrifolia by microwave-assisted extraction. Separation Science and Technology, 44(12), 2942–2955.
Catalano, E. (2016). Role of phytochemicals in the chemoprevention of tumors. arXiv preprint arXiv, 160504519.
Tuorkey, M. J. (2015). Cancer therapy with phytochemicals: Present and future perspectives. Biomedical and Environmental Sciences, 28(11), 808–819.
Singh, D., Madhav, H., & Jaiswar, G. (2016). Effects on zinc oxide on polyacrylic acid: A core–shell nanoparticles. Science and Engineering Applications, 1, 36–39.
Madhav, H., Singh, N., Singh, P., & Jaiswar, G. (2017). Biological synthesis of nanoparticles and their applications: A review. Agra University Journal of Research: Science, 1(2), 25–30.
Singh, N., Madhav, H., Yadav, S., & Jaiswar, G. (2018). Critical evaluation of thermal, optical and morphological properties of V, S and Dy doped-ZnO/PVDF/functionalized-PMMA blended Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 28(5), 2121–2130.
Madhav, H., Singh, N., & Jaiswar, G. (2019). Thermoset, bioactive, metal–polymer composites for medical applications. In Materials for biomedical engineering (pp. 105–143). Amsterdam: Elsevier.
Madhav, H., Singh, P., Singh, N., & Jaiswar, G. (2017). Evaluations of thermal and antibacterial properties of nanocomposites of functionalized poly (methyl methacrylate) with different amino containing groups. Macromolecular Research, 25(7), 689–696.
Singh, N., Madhav, H., Yadav, S., & Jaiswar, G. (2019). Impact of vanadium-, sulfur-, and dysprosium-doped zinc oxide nanoparticles on various properties of PVDF/functionalized-PMMA blend nanocomposites: Structural, optical, and morphological studies. Journal of Applied Polymer Science, 136(9), 47116.
Rathore, S., Madhav, H., & Jaiswar, G. (2019). Efficient nano-filler for the phase transformation in polyvinylidene fluoride nanocomposites by using nanoparticles of stannous sulfate. Materials Research Innovations, 23(4), 183–190.
Iravani, S., & Varma, R. S. (2019). Plant-derived edible nanoparticles and miRNAs: Emerging frontier for therapeutics and targeted drug-delivery. ACS Sustainable Chemistry & Engineering, 7(9), 8055–8069.
Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH: Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxidative medicine and cellular longevity 2016, 2016.
Ma, Y.-Y., Jin, K.-T., Wang, S.-B., Wang, H.-J., Tong, X.-M., Huang, D.-S., & Mou, X.-Z. (2017). Molecular imaging of cancer with nanoparticle-based theranostic probes. Contrast Media & Molecular Imaging, 2017.
Bazak, R., Houri, M., El Achy, S., Kamel, S., & Refaat, T. (2015). Cancer active targeting by nanoparticles: A comprehensive review of literature. Journal of Cancer Research and Clinical Oncology, 141(5), 769–784.
Wiwanitkit, V. (2006). Glomerular pore size corresponding to albumin molecular size, an explanation for underlying structural pathology leading to albuminuria at nanolevel. Renal Failure, 28(1), 101–101.
Cheng, Z., Yan, X., Sun, X., Shen, B., & Gambhir, S. S. (2016). Tumor molecular imaging with nanoparticles. Engineering, 2(1), 132–140.
Pericleous, P., Gazouli, M., Lyberopoulou, A., Rizos, S., Nikiteas, N., & Efstathopoulos, E. P. (2012). Quantum dots hold promise for early cancer imaging and detection. International Journal of Cancer, 131(3), 519–528.
Fang, M., Peng, C.-W., Pang, D.-W., & Li, Y. (2012). Quantum dots for cancer research: Current status, remaining issues, and future perspectives. Cancer Biology & Medicine, 9(3), 151.
Gao, J., Chen, K., Luong, R., Bouley, D. M., Mao, H., Qiao, T., Gambhir, S. S., & Cheng, Z. (2011). A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Letters, 12(1), 281–286.
Geng, X. F., Fang, M., Liu, S. P., & Li, Y. (2016). Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay. Molecular Medicine Reports, 14(4), 3007–3012.
Liu, X., Braun, G. B., Qin, M., Ruoslahti, E., & Sugahara, K. N. (2017). In vivo cation exchange in quantum dots for tumor-specific imaging. Nature Communications, 8(1), 343.
Brunetti, J., Riolo, G., Gentile, M., Bernini, A., Paccagnini, E., Falciani, C., Lozzi, L., Scali, S., Depau, L., & Pini, A. (2018). Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging. Journal of Nanobiotechnology, 16(1), 21.
Silva, C. O., Pinho, J. O., Lopes, J. M., Almeida, A. J., Gaspar, M. M., & Reis, C. (2019). Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics, 11(1), 22.
Wang, H., Li, X., Tse, B. W.-C., Yang, H., Thorling, C. A., Liu, Y., Touraud, M., Chouane, J. B., Liu, X., & Roberts, M. S. (2018). Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics, 8(5), 1227.
Li, S., Johnson, J., Peck, A., & Xie, Q. (2017). Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. Journal of Translational Medicine, 15(1), 18.
Chansaenpak, K., Tanjindaprateep, S., Chaicharoenaudomrung, N., Weeranantanapan, O., Noisa, P., & Kamkaew, A. (2018). Aza-BODIPY based polymeric nanoparticles for cancer cell imaging. RSC Advances, 8(69), 39248–39255.
Yang, Y., & Cui, D. (2017). Upconversion nanoparticles for gastric cancer targeted imaging and therapy. In Gastric cancer prewarning and early diagnosis system (pp. 239–270). Berlin: Springer.
Thomas, R., Park, I.-K., & Jeong, Y. Y. (2013). Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. International Journal of Molecular Sciences, 14(8), 15910–15930.
Schleich, N., Sibret, P., Danhier, P., Ucakar, B., Laurent, S., Muller, R. N., Jérôme, C., Gallez, B., Préat, V., & Danhier, F. (2013). Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. International Journal of Pharmaceutics, 447(1), 94–101.
Ruan, J., Ji, J., Song, H., Qian, Q., Wang, K., Wang, C., & Cui, D. (2012). Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer. Nanoscale Research Letters, 7, 309.
Deserno, W. M. L. L. G., Harisinghani, M. G., Taupitz, M., Jager, G. J., Witjes, J. A., Mulders, P. F., CAHVD, K., Kaufmann, D., & Barentsz, J. O. (2004). Urinary bladder cancer: Preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology, 233(2), 449–456.
Hudgins, P. A., Anzai, Y., Morris, M. R., & Lucas, M. A. (2002). Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement agent for imaging lymph nodes: A phase 2 dose study. American Journal of Neuroradiology, 23(4), 649–656.
Jalalian, S. H., Taghdisi, S. M., Hamedani, N. S., Kalat, S. A. M., Lavaee, P., ZandKarimi, M., Ghows, N., Jaafari, M. R., Naghibi, S., & Danesh, N. M. (2013). Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. European Journal of Pharmaceutical Sciences, 50(2), 191–197.
Cho, Y.-S., Yoon, T.-J., Jang, E.-S., Hong, K. S., Lee, S. Y., Kim, O. R., Park, C., Kim, Y.-J., Yi, G.-C., & Chang, K. (2010). Cetuximab-conjugated magneto-fluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. Cancer Letters, 299(1), 63–71.
Xu, X., An, H., Zhang, D., Tao, H., Dou, Y., Li, X., Huang, J., & Zhang, J. (2019). A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Science Advances, 5(1), eaat2953.
Sasaki, Y., Nishina, T., Yasui, H., Goto, M., Muro, K., Tsuji, A., Koizumi, W., Toh, Y., Hara, T., & Miyata, Y. (2014). Phase II trial of nanoparticle albumin-bound paclitaxel as second-line chemotherapy for unresectable or recurrent gastric cancer. Cancer Science, 105(7), 812–817.
Li, X., Lu, X., Xu, H., Zhu, Z., Yin, H., Qian, X., Li, R., Jiang, X., & Liu, B. (2011). Paclitaxel/tetrandrine coloaded nanoparticles effectively promote the apoptosis of gastric cancer cells based on “oxidation therapy”. Molecular Pharmaceutics, 9(2), 222–229.
Sun, Z., Song, X., Li, X., Su, T., Qi, S., Qiao, R., Wang, F., Huan, Y., Yang, W., & Wang, J. (2014). In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale, 6(23), 14343–14353.
Zhang, Z., & Feng, S.-S. (2006). Self-assembled nanoparticles of poly (lactide)–vitamin E TPGS copolymers for oral chemotherapy. International Journal of Pharmaceutics, 324(2), 191–198.
Wu, F.-l., Li, R.-T., Yang, M., Yue, G.-F., Wang, H.-Y., Liu, Q., Cui, F.-B., Wu, P.-Y., Ding, H., & Yu, L.-X. (2015). Gelatinases-stimuli nanoparticles encapsulating 5-fluorouridine and 5-aza-2′-deoxycytidine enhance the sensitivity of gastric cancer cells to chemical therapeutics. Cancer Letters, 363(1), 7–16.
Li, K., Dai, Y., Chen, W., Yu, K., Xiao, G., Richardson, J. J., Huang, W., Guo, J., Liao, X., & Shi, B. (2019). Self-assembled metal-phenolic nanoparticles for enhanced synergistic combination therapy against colon cancer. Advanced Biosystems, 3(2), 1800241.
Rashid, R. A., Abidin, S. Z., Anuar, M. A. K., Tominaga, T., Akasaka, H., Sasaki, R., Kie, K., Razak, K. A., Pham, B. T., & Hawkett, B. S. (2019). Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OpenNano, 4, 100027.
Karuppaiya, P., Satheeshkumar, E., & Tsay, H. S. (2019). Biogenic synthesis of silver nanoparticles using rhizome extract of Dysosma pleiantha and its antiproliferative effect against breast and human gastric cancer cells. Molecular Biology Reports, 1–10.
Al-Radadi, N. S. (2019). Green synthesis of platinum nanoparticles using Saudi’s dates extract and their usage on the cancer cell treatment. Arabian Journal of Chemistry, 12(3), 330–349.
Jain, A., Jain, R., Jain, S., Khatik, R., & Veer Kohli, D. (2019). Minicapsules encapsulating nanoparticles for targeting, apoptosis induction and treatment of colon cancer. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1085–1093.
Cordani, M., & Somoza, Á. (2019). Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment. Cellular and Molecular Life Sciences, 76(7), 1215–1242.
Khan, H., Ullah, H., Martorell, M., Valdes, S. E., Belwal, T., Tejada, S., Sureda, A., & Kamal, M. A. (2019). Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Seminars in Cancer Biology.
Sutradhar, K. B., & Amin, M. L. (2014). Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 12.
Dadwal, A., Baldi, A., & Kumar Narang, R. (2018). Nanoparticles as carriers for drug delivery in cancer. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup2), 295–305.
Liyanage, P. Y., Hettiarachchi, S. D., Zhou, Y., Ouhtit, A., Seven, E. S., Oztan, C. Y., Celik, E., & Leblanc, R. M. (2019). Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1871(2), 419–433.
Lombardo, D., Kiselev, M. A., & Caccamo, M. T. (2019). Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019, 26.
Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3, 7–7.
Li, Z., Tan, S., Li, S., Shen, Q., & Wang, K. (2017). Cancer drug delivery in the nano era: An overview and perspectives. Oncology Reports, 38(2), 611–624.
Suri, S. S., Fenniri, H., & Singh, B. (2007). Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology, 2(1), 16.
Kato, K., Chin, K., Yoshikawa, T., Yamaguchi, K., Tsuji, Y., Esaki, T., Sakai, K., Kimura, M., Hamaguchi, T., & Shimada, Y. (2012). Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investigational New Drugs, 30(4), 1621–1627.
Xie, J., Yang, Z., Zhou, C., Zhu, J., Lee, R. J., & Teng, L. (2016). Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnology Advances, 34(4), 343–353.
Arora, D., Saneja, A., & Jaglan, S. (2019). Cyclodextrin-based delivery systems for dietary pharmaceuticals. Environmental Chemistry Letters, 1–8.
Thipe, V. C., Amiri, K. P., Bloebaum, P., Karikachery, A. R., Khoobchandani, M., Katti, K. K., Jurisson, S. S., & Katti, K. V. (2019). Development of resveratrol-conjugated gold nanoparticles: Interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. International Journal of Nanomedicine, 14, 4413.
Brian, M. O., & Selvi, S. (2019). Cytotoxic effects of Ceiba pentandra L. mediated silver nanoparticles on HCT-116 colon cancer cell lines through ROS generation and cell membrane damage. International Journal of Research in Pharmaceutical Sciences, 10(4), 3236–3243.
Elbialy, N. S., Abdelfatah, E. A., & Khalil, W. A. (2019). Antitumor activity of curcumin-green synthesized gold nanoparticles: In vitro study. BioNanoScience, 1–8.
Mariadoss, A. V. A., Vinayagam, R., Xu, B., Venkatachalam, K., Sankaran, V., Vijayakumar, S., Bakthavatsalam, S. R., Mohamed, S. A., & David, E. (2019). Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis. Chemico-Biological Interactions, 308, 11–19.
Zhou, X., Liu, Y., Huang, Y., Ma, Y., Lv, J., & Xiao, B. (2019). Mucus-penetrating polymeric nanoparticles for oral delivery of curcumin to inflamed colon tissue. Journal of Drug Delivery Science and Technology, 52, 157–164.
Hajizadeh, M. R., Parvaz, N., Barani, M., Khoshdel, A., Fahmidehkar, M. A., Mahmoodi, M., & Torkzadeh-Mahani, M. (2019). Diosgenin-loaded niosome as an effective phytochemical nanocarrier: Physicochemical characterization, loading efficiency, and cytotoxicity assay. DARU Journal of Pharmaceutical Sciences, 1–11.
Anter, H. M., Hashim, I. I. A., Awadin, W., & Meshali, M. M. (2019). Novel chitosan oligosaccharide-based nanoparticles for gastric mucosal administration of the phytochemical “apocynin”. International Journal of Nanomedicine, 14, 4911.
Maity, R., Chatterjee, M., Banerjee, A., Das, A., Mishra, R., Mazumder, S., & Chanda, N. (2019). Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Materials Science and Engineering: C, 109909.
Gao, J., Fan, K., Jin, Y., Zhao, L., Wang, Q., Tang, Y., Xu, H., Liu, Z., Wang, S., & Lin, J. (2019). PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. European Journal of Pharmaceutical Sciences, 140, 105070.
Sweety, J. P., Sowparani, S., Mahalakshmi, P., Selvasudha, N., Yamini, D., Geetha, K., & Ruckmani, K. (2020). Fabrication of stimuli gated nanoformulation for site-specific delivery of thymoquinone for colon cancer treatment – insight into thymoquinone’s improved physicochemical properties. Journal of Drug Delivery Science and Technology, 55, 101334.
Saraf, A., Dubey, N., Dubey, N., & Sharma, M. (2019). Box Behnken design based development of curcumin loaded Eudragit S100 nanoparticles for site-spcific delivery in colon cancer. Research Journal of Pharmacy and Technology, 12(8), 3672–3678.
Udompornmongkol, P., & Chiang, B.-H. (2015). Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. Journal of Biomaterials Applications, 30(5), 537–546.
Anitha, A., Sreeranganathan, M., Chennazhi, K. P., Lakshmanan, V.-K., & Jayakumar, R. (2014). In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N, O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. European Journal of Pharmaceutics and Biopharmaceutics, 88(1), 238–251.
Huang, W., Wang, X., Shi, C., Guo, D., Xu, G., Wang, L., Bodman, A., & Luo, J. (2015). Fine-tuning vitamin E-containing telodendrimers for efficient delivery of gambogic acid in colon cancer treatment. Molecular Pharmaceutics, 12(4), 1216–1229.
Lotfi-Attari, J., Pilehvar-Soltanahmadi, Y., Dadashpour, M., Alipour, S., Farajzadeh, R., Javidfar, S., & Zarghami, N. (2017). Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutrition and Cancer, 69(8), 1290–1299.
Vimala, K., Sundarraj, S., Paulpandi, M., Vengatesan, S., & Kannan, S. (2014). Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochemistry, 49(1), 160–172.
Prajakta, D., Ratnesh, J., Chandan, K., Suresh, S., Grace, S., Meera, V., & Vandana, P. (2009). Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. Journal of Biomedical Nanotechnology, 5(5), 445–455.
Han, X., Jiang, X., Guo, L., Wang, Y., Veeraraghavan, V. P., Krishna Mohan, S., Wang, Z., & Cao, D. (2019). Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3577–3584.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Chauhan, H., Alam, M. (2020). Combination of Phytochemicals with Nanotechnology for Targeting GI Cancer Therapy. In: Nagaraju, G.P. (eds) Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-48405-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-48405-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-48404-0
Online ISBN: 978-3-030-48405-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)