Skip to main content

Addition of Drag-Reducing Polymers to Colloid Resuscitation Fluid Enhances Cerebral Microcirculation and Tissue Oxygenation After Traumatic Brain Injury Complicated by Hemorrhagic Shock

  • Chapter
  • First Online:
Oxygen Transport to Tissue XLII

Abstract

Hemorrhagic shock (HS) is a severe complication of traumatic brain injury (TBI) that doubles mortality due to severely compromised microvascular cerebral blood flow (mvCBF) and oxygen delivery reduction, as a result of hypotension. Volume expansion with resuscitation fluids (RF) for HS does not improve microvascular CBF (mvCBF); moreover, it aggravates brain edema. We showed that the addition of drag-reducing polymers (DRP) to crystalloid RF (lactated Ringer’s) significantly improves mvCBF, oxygen supply, and neuronal survival in rats suffering TBI+HS. Here, we compared the effects of colloid RF (Hetastarch) with DRP (HES-DRP) and without (HES). Fluid percussion TBI (1.5 ATA, 50 ms) was induced in rats and followed by controlled HS to a mean arterial pressure (MAP) of 40 mmHg. HES or HES-DRP was infused to restore MAP to 60 mmHg for 1 h (prehospital period), followed by blood reinfusion to a MAP of 70 mmHg (hospital period). In vivo two-photon microscopy was used to monitor cerebral microvascular blood flow, tissue hypoxia (NADH), and neuronal necrosis (i.v. propidium iodide) for 5 h after TBI+HS, followed by postmortem DiI vascular painting. Temperature, MAP, blood gases, and electrolytes were monitored. Statistical analyses were done using GraphPad Prism by Student’s t-test or Kolmogorov-Smirnov test, where appropriate. TBI+HS compromised mvCBF and tissue oxygen supply due to capillary microthrombosis. HES-DRP improved mvCBF and tissue oxygenation (p < 0.05) better than HES. The number of dead neurons in the HES-DRP was significantly less than in the HES group: 76.1 ± 8.9 vs. 178.5 ± 10.3 per 0.075 mm3 (P < 0.05). Postmortem visualization of painted vessels revealed vast microthrombosis in both hemispheres that were 33 ± 2% less in HES-DRP vs. HES (p < 0.05). Thus, resuscitation after TBI+HS using HES-DRP effectively restores mvCBF and reduces hypoxia, microthrombosis, and neuronal necrosis compared to HES. HES-DRP is more neuroprotective than lactated Ringer’s with DRP and requires an infusion of a smaller volume, which reduces the development of hypervolemia-induced brain edema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manley G, Knudson MM, Morabito D et al (2001) Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg 136(10):1118–1123

    Article  CAS  Google Scholar 

  2. Navarro JC, Pillai S, Cherian L et al (2012) Histopathological and behavioral effects of immediate and delayed hemorrhagic shock after mild traumatic brain injury in rats. J Neurotrauma 29(2):322–334

    Article  Google Scholar 

  3. Chesnut RM, Marshall SB, Piek J et al (1993) Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir Suppl 59:121–125

    CAS  Google Scholar 

  4. Pietropaoli JA, Rogers FB, Shackford SR et al (1992) The deleterious effects of intraoperative hypotension on outcome in patients with severe head injuries. J Trauma 33(3):403–407

    Article  CAS  Google Scholar 

  5. Ramming S, Shackford SR, Zhuang J et al (1994) The relationship of fluid balance and sodium administration to cerebral edema formation and intracranial pressure in a porcine model of brain injury. J Trauma 37(5):705–713

    Article  CAS  Google Scholar 

  6. Bragin DE, Lara DA, Bragina OA et al (2018) Resuscitation fluid with drag reducing polymer enhances cerebral microcirculation and tissue oxygenation after traumatic brain injury complicated by hemorrhagic shock. Adv Exp Med Biol 1072:39–43

    Article  CAS  Google Scholar 

  7. Exo JL, Shellington DK, Bayir H et al (2009) Resuscitation of traumatic brain injury and hemorrhagic shock with polynitroxylated albumin, hextend, hypertonic saline, and lactated Ringer’s: effects on acute hemodynamics, survival, and neuronal death in mice. J Neurotrauma 26(12):2403–2408

    Article  Google Scholar 

  8. Kameneva MV (2012) Microrheological effects of drag-reducing polymers in vitro and in vivo. Int J Eng Sci 59:168–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by DOD. DB was supported by NIH R01 NS112808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis E. Bragin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bragin, D.E., Bragina, O.A., Berliba, L., Kameneva, M.V., Nemoto, E.M. (2021). Addition of Drag-Reducing Polymers to Colloid Resuscitation Fluid Enhances Cerebral Microcirculation and Tissue Oxygenation After Traumatic Brain Injury Complicated by Hemorrhagic Shock. In: Nemoto, E.M., Harrison, E.M., Pias, S.C., Bragin, D.E., Harrison, D.K., LaManna, J.C. (eds) Oxygen Transport to Tissue XLII. Advances in Experimental Medicine and Biology, vol 1269. Springer, Cham. https://doi.org/10.1007/978-3-030-48238-1_45

Download citation

Publish with us

Policies and ethics