Skip to main content

Sense and Sensibility of Oxygen in Pathophysiology Using EPR Oximetry

  • Chapter
  • First Online:
Measuring Oxidants and Oxidative Stress in Biological Systems

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 34))

Abstract

Physiological homeostasis in aerobic organisms is strictly maintained by optimal cellular and tissue oxygen levels through intricate oxygen-sensing mechanisms, signaling cascades, and transport processes. Molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. An increase (hyperoxia) or decrease (hypoxia) in cellular oxygen level may result in altered cell-signaling cascades and redox imbalance leading to pathophysiological processes including cell death and tissue damage. Hypoxia has been implicated as a critical factor influencing the outcomes for several diseases, including cardiovascular diseases (myocardial infarction, ischemic stroke, and peripheral arterial disease), cancer, wound healing, and diabetic foot ulcer. The capability to measure tissue oxygenation in a reliable and repeated manner will be immensely useful for correct prognosis and treatment. This chapter focuses on the methods, particularly electron paramagnetic resonance (EPR) oximetry for quantitative measurement of tissue oxygenation using implantable oxygen sensors. Representative examples for cardiovascular and cancer applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMI:

Acute myocardial infarction

ATA:

Atmospheric absolute

BOLD:

Blood oxygen level dependent

CAD:

Coronary artery disease

CuZnSOD:

Copper zinc superoxide dismutase

CYP:

Cytochrome p450 reductase

eNOS:

Endothelial nitric oxide synthase

EPR:

Electron paramagnetic resonance

EPRI:

EPR imaging

H&E:

Hematoxylin and eosin

H2O2:

Hydrogen peroxide

HBO:

Hyperbaric oxygen

HBOT:

Hyperbaric oxygen therapy

HOË™:

Hydroxyl radical

I-R:

Ischemia-reperfusion

iNOS:

Inducible nitric oxide synthase

l-NAME:

NG-nitro-l-arginine methyl ester

LAD:

Left anterior-descending artery

LCA:

Left coronary artery

LiNc-BuO:

Lithium octa-n-butoxy-naphthalocyanine

LiPc:

Lithium phthalocyanine

LV:

Left ventricular

MI:

Myocardial infarction

MnSOD:

Manganese superoxide dismutase

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stem cell

NIR:

Near infrared

NMR:

Nuclear magnetic resonance

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOS3:

Nitric oxide synthase 3

O2–˙:

Superoxide anion radical

OMRI:

Overhauser-enhanced magnetic resonance imaging

ONOO–:

Peroxynitrite anion

OxCy:

Oxygen cycling

OxyChip:

Probe (sensor) for measuring oxygen

OxyChip-EL:

OxyChip with extended loop

PDMS:

Polydimethylsiloxane

pO2:

Partial pressure of oxygen

RIF-1:

Radiation-induced fibrosarcoma-1

ROS:

Reactive oxygen species

SM:

Skeletal myoblast

SOD:

Superoxide dismutase

SPOT Chip:

Probe (sensor) for measuring superficial perfusion oxygen tension

SPZ:

Sulfaphenazole

TcOM:

Transcutaneous oxygen measurement

TcpO2:

Transcutaneous pO2

VEGF:

Vascular endothelial growth factor

References

  1. Lane N. Oxygen : the molecule that made the world. Oxford: Oxford University Press; 2002. x, 374 p.

    Google Scholar 

  2. Kulkarni AC, Kuppusamy P, Parinandi N. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal. 2007;9(10):1717–30.

    CAS  PubMed  Google Scholar 

  3. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kutala VK, Khan M, Angelos MG, Kuppusamy P. Role of oxygen in postischemic myocardial injury. Antioxid Redox Signal. 2007;9(8):1193–206.

    CAS  PubMed  Google Scholar 

  5. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8(12):967–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–47.

    CAS  PubMed  Google Scholar 

  7. Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 2008;8(6):425–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.

    CAS  PubMed  Google Scholar 

  9. Davidson JD, Mustoe TA. Oxygen in wound healing: more than a nutrient. Wound Repair Regen. 2001;9(3):175–7.

    CAS  PubMed  Google Scholar 

  10. Hopf HW, Holm J. Hyperoxia and infection. Best Pract Res Clin Anaesthesiol. 2008;22(3):553–69.

    PubMed  Google Scholar 

  11. Hunt TK, Ellison EC, Sen CK. Oxygen: at the foundation of wound healing—introduction. World J Surg. 2004;28(3):291–3.

    PubMed  Google Scholar 

  12. Sen CK. Wound healing essentials: let there be oxygen. Wound Repair Regen. 2009;17(1):1–18.

    PubMed  PubMed Central  Google Scholar 

  13. Hopf HW, Rollins MD. Wounds: an overview of the role of oxygen. Antioxid Redox Signal. 2007;9(8):1183–92.

    CAS  PubMed  Google Scholar 

  14. Rockwell S, Moulder JE. Hypoxic fractions of human tumors xenografted into mice: a review. Int J Radiat Oncol Biol Phys. 1990;19(1):197–202.

    CAS  PubMed  Google Scholar 

  15. Vikram DS, Zweier JL, Kuppusamy P. Methods for noninvasive imaging of tissue hypoxia. Antioxid Redox Signal. 2007;9(10):1745–56.

    CAS  PubMed  Google Scholar 

  16. Vaupel P, Schlenger K, Knoop C, Hockel M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 1991;51(12):3316–22.

    CAS  PubMed  Google Scholar 

  17. Aboagye EO, Maxwell RJ, Horsman MR, Lewis AD, Workman P, Tracy M, Griffiths JR. The relationship between tumour oxygenation determined by oxygen electrode measurements and magnetic resonance spectroscopy of the fluorinated 2-nitroimidazole SR-4554. Br J Cancer. 1998;77(1):65–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim JG, Zhao D, Song Y, Constantinescu A, Mason RP, Liu H. Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping. J Biomed Opt. 2003;8(1):53–62.

    PubMed  Google Scholar 

  19. Laukemper-Ostendorf S, Scholz A, Burger K, Heussel CP, Schmittner M, Weiler N, Markstaller K, Eberle B, Kauczor HU, Quintel M, Thelen M, Schreiber WG. 19F-MRI of perflubron for measurement of oxygen partial pressure in porcine lungs during partial liquid ventilation. Magn Reson Med. 2002;47(1):82–9.

    CAS  PubMed  Google Scholar 

  20. Mason RP, Hunjan S, Le D, Constantinescu A, Barker BR, Wong PS, Peschke P, Hahn EW, Antich PP. Regional tumor oxygen tension: fluorine echo planar imaging of hexafluorobenzene reveals heterogeneity of dynamics. Int J Radiat Oncol Biol Phys. 1998;42(4):747–50.

    CAS  PubMed  Google Scholar 

  21. Mason RP, Rodbumrung W, Antich PP. Hexafluorobenzene: a sensitive 19F NMR indicator of tumor oxygenation. NMR Biomed. 1996;9(3):125–34.

    CAS  PubMed  Google Scholar 

  22. Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation. 1996;94(12):3271–5.

    CAS  PubMed  Google Scholar 

  23. Ahmad R, Kuppusamy P. Theory, instrumentation, and applications of electron paramagnetic resonance oximetry. Chem Rev. 2010;110(5):3212–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Swartz HM. Using EPR to measure a critical but often unmeasured component of oxidative damage: oxygen. Antioxid Redox Signal. 2004;6(3):677–86.

    CAS  PubMed  Google Scholar 

  25. Swartz HM, Khan N, Buckey J, Comi R, Gould L, Grinberg O, Hartford A, Hopf H, Hou H, Hug E, Iwasaki A, Lesniewski P, Salikhov I, Walczak T. Clinical applications of EPR: overview and perspectives. NMR Biomed. 2004;17(5):335–51.

    CAS  PubMed  Google Scholar 

  26. Smirnov AI, Norby SW, Walczak T, Liu KJ, Swartz HM. Physical and instrumental considerations in the use of lithium phthalocyanine for measurements of the concentration of the oxygen. J Magn Reson Ser B. 1994;103(2):95–102.

    CAS  Google Scholar 

  27. Elas M, Ahn KH, Parasca A, Barth ED, Lee D, Haney C, Halpern HJ. Electron paramagnetic resonance oxygen images correlate spatially and quantitatively with Oxylite oxygen measurements. Clin Cancer Res. 2006;12(14 Pt 1):4209–17.

    CAS  PubMed  Google Scholar 

  28. Froncisz W, Lai CS, Hyde JS. Spin-label oximetry: kinetic study of cell respiration using a rapid-passage T1-sensitive electron spin resonance display. Proc Natl Acad Sci U S A. 1985;82(2):411–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallez B, Bacic G, Goda F, Jiang J, O’Hara JA, Dunn JF, Swartz HM. Use of nitroxides for assessing perfusion, oxygenation, and viability of tissues: in vivo EPR and MRI studies. Magn Reson Med. 1996;35(1):97–106.

    CAS  PubMed  Google Scholar 

  30. Grinberg OY, Friedman BJ, Swartz HM. Intramyocardial pO2 measured by EPR. Adv Exp Med Biol. 1997;428:261–8.

    CAS  PubMed  Google Scholar 

  31. Halpern HJ, Yu C, Peric M, Barth ED, Karczmar GS, River JN, Grdina DJ, Teicher BA. Measurement of differences in pO2 in response to perfluorocarbon/carbogen in FSa and NFSa murine fibrosarcomas with low-frequency electron paramagnetic resonance oximetry. Radiat Res. 1996;145(5):610–8.

    CAS  PubMed  Google Scholar 

  32. Hou H, Dong R, Li H, Williams B, Lariviere JP, Hekmatyar SK, Kauppinen RA, Khan N, Swartz H. Dynamic changes in oxygenation of intracranial tumor and contralateral brain during tumor growth and carbogen breathing: a multisite EPR oximetry with implantable resonators. J Magn Reson. 2012;214(1):22–8.

    CAS  PubMed  Google Scholar 

  33. Ilangovan G, Li H, Zweier JL, Kuppusamy P. Effect of carbogen-breathing on redox status of the RIF-1 tumor. Adv Exp Med Biol. 2003;510:13–7.

    CAS  PubMed  Google Scholar 

  34. Ilangovan G, Liebgott T, Kutala VK, Petryakov S, Zweier JL, Kuppusamy P. EPR oximetry in the beating heart: myocardial oxygen consumption rate as an index of postischemic recovery. Magn Reson Med. 2004;51(4):835–42.

    PubMed  Google Scholar 

  35. Khan M, Kutala VK, Wisel S, Chacko SM, Kuppusamy ML, Kwiatkowski P, Kuppusamy P. Measurement of oxygenation at the site of stem cell therapy in a murine model of myocardial infarction. Adv Exp Med Biol. 2008;614:45–52.

    PubMed  Google Scholar 

  36. Khan M, Mohan IK, Kutala VK, Kotha SR, Parinandi NL, Hamlin RL, Kuppusamy P. Sulfaphenazole protects heart against ischemia-reperfusion injury and cardiac dysfunction by overexpression of iNOS, leading to enhancement of nitric oxide bioavailability and tissue oxygenation. Antioxid Redox Signal. 2009;11(4):725–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kuppusamy P, Afeworki M, Shankar RA, Coffin D, Krishna MC, Hahn SM, Mitchell JB, Zweier JL. In vivo electron paramagnetic resonance imaging of tumor heterogeneity and oxygenation in a murine model. Cancer Res. 1998;58(7):1562–8.

    CAS  PubMed  Google Scholar 

  38. Liu KJ, Gast P, Moussavi M, Norby SW, Vahidi N, Walczak T, Wu M, Swartz HM. Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems. Proc Natl Acad Sci U S A. 1993;90(12):5438–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Krishna MC, English S, Yamada K, Yoo J, Murugesan R, Devasahayam N, Cook JA, Golman K, Ardenkjaer-Larsen JH, Subramanian S, Mitchell JB. Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc Natl Acad Sci U S A. 2002;99(4):2216–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsumoto A, Matsumoto K, Matsumoto S, Hyodo F, Sowers AL, Koscielniak JW, Devasahayam N, Subramanian S, Mitchell JB, Krishna MC. Intracellular hypoxia of tumor tissue estimated by noninvasive electron paramagnetic resonance oximetry technique using paramagnetic probes. Biol Pharm Bull. 2011;34(1):142–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Halpern HJ, Yu C, Peric M, Barth E, Grdina DJ, Teicher BA. Oxymetry deep in tissues with low-frequency electron paramagnetic resonance. Proc Natl Acad Sci U S A. 1994;91(26):13047–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Roschmann P. Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging. Med Phys. 1987;14(6):922–31.

    CAS  PubMed  Google Scholar 

  43. Pandian RP, Parinandi NL, Ilangovan G, Zweier JL, Kuppusamy P. Novel particulate spin probe for targeted determination of oxygen in cells and tissues. Free Radic Biol Med. 2003;35(9):1138–48.

    CAS  PubMed  Google Scholar 

  44. Ilangovan G, Li H, Zweier JL, Krishna MC, Mitchell JB, Kuppusamy P. In vivo measurement of regional oxygenation and imaging of redox status in RIF-1 murine tumor: effect of carbogen-breathing. Magn Reson Med. 2002;48(4):723–30.

    CAS  PubMed  Google Scholar 

  45. Ilangovan G, Bratasz A, Li H, Schmalbrock P, Zweier JL, Kuppusamy P. In vivo measurement and imaging of tumor oxygenation using coembedded paramagnetic particulates. Magn Reson Med. 2004;52(3):650–7.

    PubMed  Google Scholar 

  46. Bratasz A, Pandian RP, Ilangovan G, Kuppusamy P. Monitoring oxygenation during the growth of a transplanted tumor. Adv Exp Med Biol. 2006;578:375–80.

    PubMed  Google Scholar 

  47. Gallez B, Debuyst R, Dejehet F, Liu KJ, Walczak T, Goda F, Demeure R, Taper H, Swartz HM. Small particles of fusinite and carbohydrate chars coated with aqueous soluble polymers: preparation and applications for in vivo EPR oximetry. Magn Reson Med. 1998;40(1):152–9.

    CAS  PubMed  Google Scholar 

  48. He J, Beghein N, Ceroke P, Clarkson RB, Swartz HM, Gallez B. Development of biocompatible oxygen-permeable films holding paramagnetic carbon particles: evaluation of their performance and stability in EPR oximetry. Magn Reson Med. 2001;46(3):610–4.

    CAS  PubMed  Google Scholar 

  49. Meenakshisundaram G, Eteshola E, Pandian RP, Bratasz A, Lee SC, Kuppusamy P. Fabrication and physical evaluation of a polymer-encapsulated paramagnetic probe for biomedical oximetry. Biomed Microdevices. 2009;11(4):773–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Meenakshisundaram G, Pandian RP, Eteshola E, Lee SC, Kuppusamy P. A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry. J Magn Reson. 2010;203(1):185–9.

    CAS  PubMed  Google Scholar 

  51. Belanger MC, Marois Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res. 2001;58(5):467–77.

    CAS  PubMed  Google Scholar 

  52. Mata A, Fleischman AJ, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices. 2005;7(4):281–93.

    CAS  PubMed  Google Scholar 

  53. Shanbhag PV, Sirkar KK. Ozone and oxygen permeation behavior of silicon capillary membranes employed in membrane ozonators. J Appl Polym Sci. 1998;69(7):1263–73.

    CAS  Google Scholar 

  54. Zhang ZY. Facilitated oxygen transport in a novel silicone polymer membrane containing carboxylic cobalt groups. J Appl Polym Sci. 2003;90(4):1038–44.

    CAS  Google Scholar 

  55. Mitrovski SM, Nuzzo RG. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients. Lab Chip. 2005;5(6):634–45.

    CAS  PubMed  Google Scholar 

  56. Abbasi F, Mirzadeh H, Katbab AA. Modification of polysiloxane polymers for biomedical applications: a review. Polym Int. 2001;50(12):1279–87.

    CAS  Google Scholar 

  57. Kuncova-Kallio J, Kallio PJ. PDMS and its suitability for analytical microfluidic devices. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2486–9.

    PubMed  Google Scholar 

  58. Eddings MA, Gale BK. A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. J Micromech Microeng. 2006;16(11):2396–402.

    Google Scholar 

  59. Mills CA, Martínez E, Errachid A, Gomila G, Samsó A, Samitier J. Small scale structures: the fabrication of polymeric nanostructures for biomedical applications using pattern replication techniques. Contrib Sci. 2005;3(1):47–56.

    Google Scholar 

  60. Quake SR, Scherer A. From micro- to nanofabrication with soft materials. Science. 2000;290(5496):1536–40.

    CAS  PubMed  Google Scholar 

  61. Meenakshisundaram G, Eteshola E, Pandian RP, Bratasz A, Selvendiran K, Lee SC, Krishna MC, Swartz HM, Kuppusamy P. Oxygen sensitivity and biocompatibility of an implantable paramagnetic probe for repeated measurements of tissue oxygenation. Biomed Microdevices. 2009;11(4):817–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tse D, Kuppusamy P. Biocompatibility of oxygen-sensing paramagnetic implants. Cell Biochem Biophys. 2019;77(3):197–202.

    CAS  PubMed  Google Scholar 

  63. Hou H, Khan N, Gohain S, Kuppusamy ML, Kuppusamy P. Pre-clinical evaluation of OxyChip for long-term EPR oximetry. Biomed Microdevices. 2018;20(2):29.

    PubMed  Google Scholar 

  64. Hou H, Khan N, Nagane M, Gohain S, Chen EY, Jarvis LA, Schaner PE, Williams BB, Flood AB, Swartz HM, Kuppusamy P. Skeletal muscle oxygenation measured by EPR oximetry using a highly sensitive polymer-encapsulated paramagnetic sensor. Adv Exp Med Biol. 2016;923:351–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hou H, Khan N, Gohain S, Eskey CJ, Moodie KL, Maurer KJ, Swartz HM, Kuppusamy P. Dynamic EPR oximetry of changes in intracerebral oxygen tension during induced thromboembolism. Cell Biochem Biophys. 2017;75(3–4):285–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hou H, Khan N, Lariviere J, Hodge S, Chen EY, Jarvis LA, Eastman A, Williams BB, Kuppusamy P, Swartz HM. Skeletal muscle and glioma oxygenation by carbogen inhalation in rats: a longitudinal study by EPR oximetry using single-probe implantable oxygen sensors. Adv Exp Med Biol. 2014;812:97–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Khan N, Hou H, Hodge S, Kuppusamy M, Chen EY, Eastman A, Kuppusamy P, Swartz HM. Recurrent low-dose chemotherapy to inhibit and oxygenate head and neck tumors. Adv Exp Med Biol. 2014;812:105–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hou H, Khan N, Kuppusamy P. Measurement of pO2 in a pre-clinical model of rabbit tumor using OxyChip, a paramagnetic oxygen sensor. Adv Exp Med Biol. 2017;977:313–8.

    CAS  PubMed  Google Scholar 

  69. Polacco MA, Hou H, Kuppusamy P, Chen EY. Measuring flap oxygen using electron paramagnetic resonance oximetry. Laryngoscope. 2019;129(12):E415–9.

    CAS  PubMed  Google Scholar 

  70. Jarvis LA, Williams BB, Schaner PE, Chen EY, Angeles CV, Hou H, Schreiber W, Wood VA, Flood AB, Swartz HM, Kuppusamy P. Phase 1 clinical trial of OxyChip, an implantable absolute pO(2) sensor for tumor oximetry. Int J Radiat Oncol Biol Phys. 2016;96(2):S109–10.

    Google Scholar 

  71. Schaner PE, Chen EY, Jarvis LA, Zuurbier RA, DiFlorio-Alexander RM, Paydarfar JA, Gosselin BJ, Pettus JR, Hou H, Schreiber WA, Kmiec MM, Petryakov SV, Demidenko E, Wood VA, Flood AB, Swartz HM, Kuppusamy P. Quantitation of pO2 using the OxyChip in human tumors via electron paramagnetic resonance oximetry: baseline variability and response to hyperoxygenation. Int J Radiat Oncol Biol Phys. 2019;105(1):E675.

    Google Scholar 

  72. Kmiec MM, Hou H, Kuppusamy ML, Drews TM, Prabhat AM, Petryakov SV, Demidenko E, Schaner PE, Buckey JC, Blank A, Kuppusamy P. Application of SPOT chip for transcutaneous oximetry. Magn Reson Med. 2019;81(5):2837–40.

    PubMed  PubMed Central  Google Scholar 

  73. Kmiec MM, Hou H, Lakshmi Kuppusamy M, Drews TM, Prabhat AM, Petryakov SV, Demidenko E, Schaner PE, Buckey JC, Blank A, Kuppusamy P. Transcutaneous oxygen measurement in humans using a paramagnetic skin adhesive film. Magn Reson Med. 2019;81(2):781–94.

    CAS  PubMed  Google Scholar 

  74. Kmiec MM, Tse D, Mast JM, Ahmad R, Kuppusamy P. Implantable microchip containing oxygen-sensing paramagnetic crystals for long-term, repeated, and multisite in vivo oximetry. Biomed Microdevices. 2019;21(3):71.

    PubMed  Google Scholar 

  75. Caston RM, Schreiber WA, Hou H, Williams BB, Chen EY, Schaner PE, Jarvis LA, Flood AB, Petryakov SV, Kmiec MM, Kuppusamy P, Swartz HM. Development of the implantable resonator system for clinical EPR oximetry. Cell Biochem Biophys. 2017;75(3–4):275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pandian RP, Raju NP, Gallucci JC, Woodward PM, Epstein AJ, Kuppusamy P. A new tetragonal crystalline polymorph of lithium octa-n-butoxy-naphthalocyanine (LiNc-BuO) radical: structural, magnetic and oxygen-sensing properties. Chem Mater. 2010;22(23):6254–62.

    CAS  Google Scholar 

  77. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 1992;326(4):242–50.

    CAS  PubMed  Google Scholar 

  78. Agbulut O, Vandervelde S, Al Attar N, Larghero J, Ghostine S, Leobon B, Robidel E, Borsani P, Le Lorc’h M, Bissery A, Chomienne C, Bruneval P, Marolleau JP, Vilquin JT, Hagege A, Samuel JL, Menasche P. Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium. J Am Coll Cardiol. 2004;44(2):458–63.

    CAS  PubMed  Google Scholar 

  79. Chiu RC, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg. 1995;60(1):12–8.

    CAS  PubMed  Google Scholar 

  80. Ghostine S, Carrion C, Souza LC, Richard P, Bruneval P, Vilquin JT, Pouzet B, Schwartz K, Menasche P, Hagege AA. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation. 2002;106(12 Suppl 1):I131–6.

    PubMed  Google Scholar 

  81. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T. Implantation of bone marrow cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001;104(9):1046–52.

    CAS  PubMed  Google Scholar 

  82. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci. 2001;938:221–9; discussion 229–30.

    CAS  PubMed  Google Scholar 

  83. Pagani FD, DerSimonian H, Zawadzka A, Wetzel K, Edge AS, Jacoby DB, Dinsmore JH, Wright S, Aretz TH, Eisen HJ, Aaronson KD. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol. 2003;41(5):879–88.

    PubMed  Google Scholar 

  84. Retuerto MA, Schalch P, Patejunas G, Carbray J, Liu N, Esser K, Crystal RG, Rosengart TK. Angiogenic pretreatment improves the efficacy of cellular cardiomyoplasty performed with fetal cardiomyocyte implantation. J Thorac Cardiovasc Surg. 2004;127(4):1041–9; discussion 1049–51.

    PubMed  Google Scholar 

  85. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361(9351):47–9.

    PubMed  Google Scholar 

  86. McConnell PI, del Rio CL, Jacoby DB, Pavlicova M, Kwiatkowski P, Zawadzka A, Dinsmore JH, Astra L, Wisel S, Michler RE. Correlation of autologous skeletal myoblast survival with changes in left ventricular remodeling in dilated ischemic heart failure. J Thorac Cardiovasc Surg. 2005;130(4):1001.

    PubMed  Google Scholar 

  87. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A. 2005;102(13):4783–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Salim A, Giaccia AJ, Longaker MT. Stem cell differentiation. Nat Biotechnol. 2004;22(7):804–5; author reply 805–6.

    CAS  PubMed  Google Scholar 

  89. Wang DW, Fermor B, Gimble JM, Awad HA, Guilak F. Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells. J Cell Physiol. 2005;204(1):184–91.

    CAS  PubMed  Google Scholar 

  90. Silverman HS, Wei S, Haigney MC, Ocampo CJ, Stern MD. Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia. Circ Res. 1997;80(5):699–707.

    CAS  PubMed  Google Scholar 

  91. Khan M, Kutala VK, Vikram DS, Wisel S, Chacko SM, Kuppusamy ML, Mohan IK, Zweier JL, Kwiatkowski P, Kuppusamy P. Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. Am J Physiol Heart Circ Physiol. 2007;293(4):H2129–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hearse DJ, Bolli R. Reperfusion induced injury: manifestations, mechanisms, and clinical relevance. Cardiovasc Res. 1992;26(2):101–8.

    CAS  PubMed  Google Scholar 

  93. Das DK, Maulik N. Antioxidant effectiveness in ischemia-reperfusion tissue injury. Methods Enzymol. 1994;233:601–10.

    CAS  PubMed  Google Scholar 

  94. Chen Z, Siu B, Ho YS, Vincent R, Chua CC, Hamdy RC, Chua BH. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol. 1998;30(11):2281–9.

    CAS  PubMed  Google Scholar 

  95. Chen Z, Oberley TD, Ho Y, Chua CC, Siu B, Hamdy RC, Epstein CJ, Chua BH. Overexpression of CuZnSOD in coronary vascular cells attenuates myocardial ischemia/reperfusion injury. Free Radic Biol Med. 2000;29(7):589–96.

    CAS  PubMed  Google Scholar 

  96. Yoshida T, Watanabe M, Engelman DT, Engelman RM, Schley JA, Maulik N, Ho YS, Oberley TD, Das DK. Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury. J Mol Cell Cardiol. 1996;28(8):1759–67.

    CAS  PubMed  Google Scholar 

  97. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.

    CAS  PubMed  Google Scholar 

  98. Liaudet L, Soriano FG, Szabo C. Biology of nitric oxide signaling. Crit Care Med. 2000;28(4 Suppl):N37–52.

    CAS  PubMed  Google Scholar 

  99. Zweier JL, Wang P, Kuppusamy P. Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy. J Biol Chem. 1995;270(1):304–7.

    CAS  PubMed  Google Scholar 

  100. Depre C, Fierain L, Hue L. Activation of nitric oxide synthase by ischaemia in the perfused heart. Cardiovasc Res. 1997;33(1):82–7.

    CAS  PubMed  Google Scholar 

  101. Woolfson RG, Patel VC, Neild GH, Yellon DM. Inhibition of nitric oxide synthesis reduces infarct size by an adenosine-dependent mechanism. Circulation. 1995;91(5):1545–51.

    CAS  PubMed  Google Scholar 

  102. Naseem SA, Kontos MC, Rao PS, Jesse RL, Hess ML, Kukreja RC. Sustained inhibition of nitric oxide by NG-nitro-L-arginine improves myocardial function following ischemia/reperfusion in isolated perfused rat heart. J Mol Cell Cardiol. 1995;27(1):419–26.

    CAS  PubMed  Google Scholar 

  103. Jones SP, Greer JJ, Kakkar AK, Ware PD, Turnage RH, Hicks M, van Haperen R, de Crom R, Kawashima S, Yokoyama M, Lefer DJ. Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am J Physiol Heart Circ Physiol. 2004;286(1):H276–82.

    CAS  PubMed  Google Scholar 

  104. Pernow J, Wang QD. The role of the L-arginine/nitric oxide pathway in myocardial ischaemic and reperfusion injury. Acta Physiol Scand. 1999;167(2):151–9.

    CAS  PubMed  Google Scholar 

  105. Weyrich AS, Ma XL, Lefer AM. The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation. 1992;86(1):279–88.

    CAS  PubMed  Google Scholar 

  106. Shinmura K, Tang XL, Takano H, Hill M, Bolli R. Nitric oxide donors attenuate myocardial stunning in conscious rabbits. Am J Phys. 1999;277(6 Pt 2):H2495–503.

    CAS  Google Scholar 

  107. Sato H, Zhao ZQ, Vinten-Johansen J. L-Arginine inhibits neutrophil adherence and coronary artery dysfunction. Cardiovasc Res. 1996;31(1):63–72.

    CAS  PubMed  Google Scholar 

  108. Lefer AM. Attenuation of myocardial ischemia-reperfusion injury with nitric oxide replacement therapy. Ann Thorac Surg. 1995;60(3):847–51.

    CAS  PubMed  Google Scholar 

  109. Hunter AL, Cruz RP, Cheyne BM, McManus BM, Granville DJ. Cytochrome p450 enzymes and cardiovascular disease. Can J Physiol Pharmacol. 2004;82(12):1053–60.

    CAS  PubMed  Google Scholar 

  110. Granville DJ, Tashakkor B, Takeuchi C, Gustafsson AB, Huang C, Sayen MR, Wentworth P Jr, Yeager M, Gottlieb RA. Reduction of ischemia and reperfusion-induced myocardial damage by cytochrome P450 inhibitors. Proc Natl Acad Sci U S A. 2004;101(5):1321–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nithipatikom K, Gross ER, Endsley MP, Moore JM, Isbell MA, Falck JR, Campbell WB, Gross GJ. Inhibition of cytochrome P450omega-hydroxylase: a novel endogenous cardioprotective pathway. Circ Res. 2004;95(8):e65–71.

    CAS  PubMed  Google Scholar 

  112. Seubert J, Yang B, Bradbury JA, Graves J, Degraff LM, Gabel S, Gooch R, Foley J, Newman J, Mao L, Rockman HA, Hammock BD, Murphy E, Zeldin DC. Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circ Res. 2004;95(5):506–14.

    CAS  PubMed  Google Scholar 

  113. Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP, Busse R. Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res. 2001;88(1):44–51.

    CAS  PubMed  Google Scholar 

  114. Fichtlscherer S, Dimmeler S, Breuer S, Busse R, Zeiher AM, Fleming I. Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation. 2004;109(2):178–83.

    CAS  PubMed  Google Scholar 

  115. Elmi S, Sallam NA, Rahman MM, Teng X, Hunter AL, Moien-Afshari F, Khazaei M, Granville DJ, Laher I. Sulfaphenazole treatment restores endothelium-dependent vasodilation in diabetic mice. Vasc Pharmacol. 2008;48(1):1–8.

    CAS  Google Scholar 

  116. Khan M, Mohan IK, Kutala VK, Kumbala D, Kuppusamy P. Cardioprotection by sulfaphenazole, a cytochrome p450 inhibitor: mitigation of ischemia-reperfusion injury by scavenging of reactive oxygen species. J Pharmacol Exp Ther. 2007;323(3):813–21.

    CAS  PubMed  Google Scholar 

  117. Okunieff P, Hoeckel M, Dunphy EP, Schlenger K, Knoop C, Vaupel P. Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone. Int J Radiat Oncol Biol Phys. 1993;26(4):631–6.

    CAS  PubMed  Google Scholar 

  118. Hockel M, Knoop C, Schlenger K, Vorndran B, Baussmann E, Mitze M, Knapstein PG, Vaupel P. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol. 1993;26(1):45–50.

    CAS  PubMed  Google Scholar 

  119. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996;56(5):941–3.

    CAS  PubMed  Google Scholar 

  120. Rofstad EK. Microenvironment-induced cancer metastasis. Int J Radiat Biol. 2000;76(5):589–605.

    CAS  PubMed  Google Scholar 

  121. Menon C, Fraker DL. Tumor oxygenation status as a prognostic marker. Cancer Lett. 2005;221(2):225–35.

    CAS  PubMed  Google Scholar 

  122. Evans SM, Koch CJ. Prognostic significance of tumor oxygenation in humans. Cancer Lett. 2003;195(1):1–16.

    CAS  PubMed  Google Scholar 

  123. Stone HB, Brown JM, Phillips TL, Sutherland RM. Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19-20, 1992, at the National Cancer Institute, Bethesda, Maryland. Radiat Res. 1993;136(3):422–34.

    CAS  PubMed  Google Scholar 

  124. Milosevic M, Fyles A, Hedley D, Hill R. The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol. 2004;14(3):249–58.

    PubMed  Google Scholar 

  125. Olive PL, Aquino-Parsons C. Measurement of tumor hypoxia using single-cell methods. Semin Radiat Oncol. 2004;14(3):241–8.

    PubMed  Google Scholar 

  126. Dorie MJ, Kallman RF. Reoxygenation in the RIF-1 tumor. Int J Radiat Oncol Biol Phys. 1984;10(5):687–93.

    CAS  PubMed  Google Scholar 

  127. Olive PL, Vikse CM, Durand RE. Hypoxic fractions measured in murine tumors and normal tissues using the comet assay. Int J Radiat Oncol Biol Phys. 1994;29(3):487–91.

    CAS  PubMed  Google Scholar 

  128. Mueller-Klieser W, Vaupel P, Manz R, Schmidseder R. Intracapillary oxyhemoglobin saturation of malignant tumors in humans. Int J Radiat Oncol Biol Phys. 1981;7(10):1397–404.

    CAS  PubMed  Google Scholar 

  129. Koch CJ, Evans SM. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol. 2003;510:285–92.

    CAS  PubMed  Google Scholar 

  130. Koch CJ. Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5. Methods Enzymol. 2002;352:3–31.

    CAS  PubMed  Google Scholar 

  131. Hockel M, Schlenger K, Knoop C, Vaupel P. Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res. 1991;51(22):6098–102.

    CAS  PubMed  Google Scholar 

  132. Vinogradov SA, Lo LW, Jenkins WT, Evans SM, Koch C, Wilson DF. Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors. Biophys J. 1996;70(4):1609–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Braun RD, Lanzen JL, Snyder SA, Dewhirst MW. Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol Heart Circ Physiol. 2001;280(6):H2533–44.

    CAS  PubMed  Google Scholar 

  134. Zhao D, Jiang L, Mason RP. Measuring changes in tumor oxygenation. Methods Enzymol. 2004;386:378–418.

    CAS  PubMed  Google Scholar 

  135. al-Hallaq HA, Zamora MA, Fish BL, Halpern HJ, Moulder JE, Karczmar GS. Using high spectral and spatial resolution bold MRI to choose the optimal oxygenating treatment for individual cancer patients. Adv Exp Med Biol. 2003;530:433–40.

    PubMed  Google Scholar 

  136. Elas M, Williams BB, Parasca A, Mailer C, Pelizzari CA, Lewis MA, River JN, Karczmar GS, Barth ED, Halpern HJ. Quantitative tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): methodology and comparison with blood oxygen level-dependent (BOLD) MRI. Magn Reson Med. 2003;49(4):682–91.

    PubMed  Google Scholar 

  137. Gallez B, Baudelet C, Jordan BF. Assessment of tumor oxygenation by electron paramagnetic resonance: principles and applications. NMR Biomed. 2004;17(5):240–62.

    CAS  PubMed  Google Scholar 

  138. Fan X, River JN, Zamora M, Al-Hallaq HA, Karczmar GS. Effect of carbogen on tumor oxygenation: combined fluorine-19 and proton MRI measurements. Int J Radiat Oncol Biol Phys. 2002;54(4):1202–9.

    CAS  PubMed  Google Scholar 

  139. Dunn JF, O’Hara JA, Zaim-Wadghiri Y, Lei H, Meyerand ME, Grinberg OY, Hou H, Hoopes PJ, Demidenko E, Swartz HM. Changes in oxygenation of intracranial tumors with carbogen: a BOLD MRI and EPR oximetry study. J Magn Reson Imaging. 2002;16(5):511–21.

    PubMed  Google Scholar 

  140. Goda F, O’Hara JA, Rhodes ES, Liu KJ, Dunn JF, Bacic G, Swartz HM. Changes of oxygen tension in experimental tumors after a single dose of X-ray irradiation. Cancer Res. 1995;55(11):2249–52.

    CAS  PubMed  Google Scholar 

  141. Goda F, Bacic G, O’Hara JA, Gallez B, Swartz HM, Dunn JF. The relationship between partial pressure of oxygen and perfusion in two murine tumors after X-ray irradiation: a combined gadopentetate dimeglumine dynamic magnetic resonance imaging and in vivo electron paramagnetic resonance oximetry study. Cancer Res. 1996;56(14):3344–9.

    CAS  PubMed  Google Scholar 

  142. Sonveaux P, Dessy C, Brouet A, Jordan BF, Gregoire V, Gallez B, Balligand JL, Feron O. Modulation of the tumor vasculature functionality by ionizing radiation accounts for tumor radiosensitization and promotes gene delivery. FASEB J. 2002;16(14):1979–81.

    CAS  PubMed  Google Scholar 

  143. Olive PL. Radiation-induced reoxygenation in the SCCVII murine tumour: evidence for a decrease in oxygen consumption and an increase in tumour perfusion. Radiother Oncol. 1994;32(1):37–46.

    CAS  PubMed  Google Scholar 

  144. Mast JM, Kuppusamy P. Hyperoxygenation as a therapeutic supplement for treatment of triple negative breast cancer. Front Oncol. 2018;8:527.

    PubMed  PubMed Central  Google Scholar 

  145. Mast JM, Hinds JW, Tse D, Axelrod K, Kuppusamy ML, Kmiec MM, Bognar B, Kalai T, Kuppusamy P. Selective induction of cellular toxicity and anti-tumor efficacy by N-methylpiperazinyl diarylidenylpiperidone and its pro-nitroxide conjugate through ROS-mediated mitochondrial dysfunction and G2/M cell-cycle arrest in human pancreatic cancer. Cell Biochem Biophys. 2020;78(2):191–202.

    Google Scholar 

  146. Rivera BK, Naidu SK, Subramanian K, Joseph M, Hou H, Khan N, Swartz HM, Kuppusamy P. Real-time, in vivo determination of dynamic changes in lung and heart tissue oxygenation using EPR oximetry. Adv Exp Med Biol. 2014;812:81–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Prabhat AM, Kuppusamy ML, Naidu SK, Meduru S, Reddy PT, Dominic A, Khan M, Rivera BK, Kuppusamy P. Supplemental oxygen protects heart against acute myocardial infarction. Front Cardiovasc Med. 2018;5:114.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Khan N, Hou H, Eskey CJ, Moodie K, Gohain S, Du G, Hodge S, Culp WC, Kuppusamy P, Swartz HM. Deep-tissue oxygen monitoring in the brain of rabbits for stroke research. Stroke. 2015;46(3):e62–6.

    PubMed  PubMed Central  Google Scholar 

  149. Khan M, Meduru S, Gogna R, Madan E, Citro L, Kuppusamy ML, Sayyid M, Mostafa M, Hamlin RL, Kuppusamy P. Oxygen cycling in conjunction with stem cell transplantation induces NOS3 expression leading to attenuation of fibrosis and improved cardiac function. Cardiovasc Res. 2012;93(1):89–99.

    CAS  PubMed  Google Scholar 

  150. Khan M, Meduru S, Mohan IK, Kuppusamy ML, Wisel S, Kulkarni A, Rivera BK, Hamlin RL, Kuppusamy P. Hyperbaric oxygenation enhances transplanted cell graft and functional recovery in the infarct heart. J Mol Cell Cardiol. 2009;47(2):275–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Khan M, Meduru S, Pandian RP, Rivera BK, Kuppusamy P. Effect of oxygenation on stem-cell therapy for myocardial infarction. Adv Exp Med Biol. 2011;701:175–81.

    CAS  PubMed  Google Scholar 

  152. O’Connor RE, Brady W, Brooks SC, Diercks D, Egan J, Ghaemmaghami C, Menon V, O’Neil BJ, Travers AH, Yannopoulos D. Part 10: acute coronary syndromes: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):S787–817.

    PubMed  Google Scholar 

  153. Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, Hochman JS, Krumholz HM, Kushner FG, Lamas GA, Mullany CJ, Ornato JP, Pearle DL, Sloan MA, Smith SC Jr, American College of Cardiology, American Heart Association, Canadian Cardiovascular Society. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction—executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). J Am Coll Cardiol. 2004;44(3):671–719.

    PubMed  Google Scholar 

  154. Van de Werf F, Ardissino D, Betriu A, Cokkinos DV, Falk E, Fox KA, Julian D, Lengyel M, Neumann FJ, Ruzyllo W, Thygesen C, Underwood SR, Vahanian A, Verheugt FW, Wijns W, Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology. Management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force on the Management of Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J. 2003;24(1):28–66.

    PubMed  Google Scholar 

  155. O’Driscoll BR, Howard LS, Davison AG, British Thoracic Society. BTS guideline for emergency oxygen use in adult patients. Thorax. 2008;63(Suppl 6):vi1–68.

    PubMed  Google Scholar 

  156. Kenmure AC, Murdoch WR, Beattie AD, Marshall JC, Cameron AJ. Circulatory and metabolic effects of oxygen in myocardial infarction. Br Med J. 1968;4(5627):360–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Thomas M, Malmcrona R, Shillingford J. Haemodynamic effects of oxygen in patients with acute myocardial infarction. Br Heart J. 1965;27:401–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Shillingford JP, Thomas M. Cardiovascular and pulmonary changes in patients with myocardial infarction treated in an intensive care and research unit. Am J Cardiol. 1967;20(4):484–93.

    CAS  PubMed  Google Scholar 

  159. Cameron AJ, Hutton I, Kenmure AC, Murdoch WR. Haemodynamic and metabolic effects of hyperbaric oxygen in myocardial infarction. Lancet. 1966;2(7468):833–7.

    CAS  PubMed  Google Scholar 

  160. Foster GL, Casten GG, Reeves TJ. The effects of oxygen breathing in patients with acute myocardial infarction. Cardiovasc Res. 1969;3(2):179–89.

    CAS  PubMed  Google Scholar 

  161. Mackenzie GJ, Flenley DC, Taylor SH, McDonald AH, Staunton HP, Donald KW. Circulatory and respiratory studies in myocardial infarction and cardiogenic shock. Lancet. 1964;2(7364):825–32.

    CAS  PubMed  Google Scholar 

  162. Wijesinghe M, Perrin K, Ranchord A, Simmonds M, Weatherall M, Beasley R. Routine use of oxygen in the treatment of myocardial infarction: systematic review. Heart. 2009;95(3):198–202.

    CAS  PubMed  Google Scholar 

  163. Stavitsky Y, Shandling AH, Ellestad MH, Hart GB, Van Natta B, Messenger JC, Strauss M, Dekleva MN, Alexander JM, Mattice M, Clarke D. Hyperbaric oxygen and thrombolysis in myocardial infarction: the ‘HOT MI’ randomized multicenter study. Cardiology. 1998;90(2):131–6.

    CAS  PubMed  Google Scholar 

  164. Ashfield R, Gavey CJ. Severe acute myocardial infarction treated with hyperbaric oxygen. Report on forty patients. Postgrad Med J. 1969;45(528):648–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Tibbles PM, Edelsberg JS. Hyperbaric-oxygen therapy. N Engl J Med. 1996;334(25):1642–8.

    CAS  PubMed  Google Scholar 

  166. Thackham JA, McElwain DL, Long RJ. The use of hyperbaric oxygen therapy to treat chronic wounds: a review. Wound Repair Regen. 2008;16(3):321–30.

    PubMed  Google Scholar 

  167. Yogaratnam JZ, Laden G, Madden LA, Seymour AM, Guvendik L, Cowen M, Greenman J, Cale A, Griffin S. Hyperbaric oxygen: a new drug in myocardial revascularization and protection? Cardiovasc Revasc Med. 2006;7(3):146–54.

    PubMed  Google Scholar 

  168. Yogaratnam JZ, Laden G, Guvendik L, Cowen M, Cale A, Griffin S. Pharmacological preconditioning with hyperbaric oxygen: can this therapy attenuate myocardial ischemic reperfusion injury and induce myocardial protection via nitric oxide? J Surg Res. 2008;149(1):155–64.

    CAS  PubMed  Google Scholar 

  169. Sterling DL, Thornton JD, Swafford A, Gottlieb SF, Bishop SP, Stanley AW, Downey JM. Hyperbaric oxygen limits infarct size in ischemic rabbit myocardium in vivo. Circulation. 1993;88(4 Pt 1):1931–6.

    CAS  PubMed  Google Scholar 

  170. Dekleva M, Neskovic A, Vlahovic A, Putnikovic B, Beleslin B, Ostojic M. Adjunctive effect of hyperbaric oxygen treatment after thrombolysis on left ventricular function in patients with acute myocardial infarction. Am Heart J. 2004;148(4):E14.

    PubMed  Google Scholar 

  171. Thom SR, Bhopale VM, Velazquez OC, Goldstein LJ, Thom LH, Buerk DG. Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart Circ Physiol. 2006;290(4):H1378–86.

    CAS  PubMed  Google Scholar 

  172. McGowan FX Jr, Davis PJ, del Nido PJ, Sobek M, Allen JW, Downing SE. Endothelium-dependent regulation of coronary tone in the neonatal pig. Anesth Analg. 1994;79(6):1094–101.

    CAS  PubMed  Google Scholar 

  173. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Am J Phys. 1992;262(2 Pt 2):H611–5.

    CAS  Google Scholar 

  174. Noel AA, Fallek SR, Hobson RW 2nd, Duran WN. Inhibition of nitric oxide synthase attenuates primed microvascular permeability in the in vivo microcirculation. J Vasc Surg. 1995;22(6):661–9; discussion 669–70.

    CAS  PubMed  Google Scholar 

  175. Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987;92(1):181–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovasc Res. 1999;43(4):860–78.

    CAS  PubMed  Google Scholar 

  177. Johnson G III, Tsao PS, Mulloy D, Lefer AM. Cardioprotective effects of acidified sodium nitrite in myocardial ischemia with reperfusion. J Pharmacol Exp Ther. 1990;252(1):35–41.

    CAS  PubMed  Google Scholar 

  178. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991;88(11):4651–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Clancy RM, Leszczynska-Piziak J, Abramson SB. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest. 1992;90(3):1116–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001;33(11):1897–918.

    CAS  PubMed  Google Scholar 

  181. Cabigas BP, Su J, Hutchins W, Shi Y, Schaefer RB, Recinos RF, Nilakantan V, Kindwall E, Niezgoda JA, Baker JE. Hyperoxic and hyperbaric-induced cardioprotection: role of nitric oxide synthase 3. Cardiovasc Res. 2006;72(1):143–51.

    CAS  PubMed  Google Scholar 

  182. Buras JA, Stahl GL, Svoboda KK, Reenstra WR. Hyperbaric oxygen downregulates ICAM-1 expression induced by hypoxia and hypoglycemia: the role of NOS. Am J Physiol Cell Physiol. 2000;278(2):C292–302.

    CAS  PubMed  Google Scholar 

  183. Cai H, Li Z, Davis ME, Kanner W, Harrison DG, Dudley SC Jr. Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide. Mol Pharmacol. 2003;63(2):325–31.

    CAS  PubMed  Google Scholar 

  184. Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol. 2007;42(2):271–9.

    CAS  PubMed  Google Scholar 

  185. Tanaka T, Nakamura H, Yodoi J, Bloom ET. Redox regulation of the signaling pathways leading to eNOS phosphorylation. Free Radic Biol Med. 2005;38(9):1231–42.

    CAS  PubMed  Google Scholar 

  186. Thomas SR, Chen K, Keaney JF Jr. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J Biol Chem. 2002;277(8):6017–24.

    CAS  PubMed  Google Scholar 

  187. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest. 1997;100(6):1363–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Crow MT, Mani K, Nam YJ, Kitsis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res. 2004;95(10):957–70.

    CAS  PubMed  Google Scholar 

  189. Alvarado-Vasquez N, Zapata E, Alcazar-Leyva S, Masso F, Montano LF. Reduced NO synthesis and eNOS mRNA expression in endothelial cells from newborns with a strong family history of type 2 diabetes. Diabetes Metab Res Rev. 2007;23(7):559–66.

    CAS  PubMed  Google Scholar 

  190. Chen YK, Hsue SS, Lin LM. Correlation between inducible nitric oxide synthase and p53 expression for DMBA-induced hamster buccal-pouch carcinomas. Oral Dis. 2003;9(5):227–34.

    CAS  PubMed  Google Scholar 

  191. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10(9):1054–72.

    CAS  PubMed  Google Scholar 

  192. Levine AJ, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13(6):1027–36.

    CAS  PubMed  Google Scholar 

  193. Vousden KH. Outcomes of p53 activation--spoilt for choice. J Cell Sci. 2006;119(Pt 24):5015–20.

    CAS  PubMed  Google Scholar 

  194. Gogna R, Madan E, Keppler B, Pati U. Gallium compound GaQ(3)-induced Ca(2+) signalling triggers p53-dependent and -independent apoptosis in cancer cells. Br J Pharmacol. 2012;166(2):617–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy P, Mahdi AA. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget. 2011;2(12):948–57.

    PubMed  PubMed Central  Google Scholar 

  196. Janicke RU, Sohn D, Schulze-Osthoff K. The dark side of a tumor suppressor: anti-apoptotic p53. Cell Death Differ. 2008;15(6):959–76.

    CAS  PubMed  Google Scholar 

  197. Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, Hofseth LJ, Moake M, Nagashima M, Forrester KS, Harris CC. p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 2004;64(7):2350–6.

    CAS  PubMed  Google Scholar 

  198. Tan M, Li S, Swaroop M, Guan K, Oberley LW, Sun Y. Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem. 1999;274(17):12061–6.

    CAS  PubMed  Google Scholar 

  199. Yan W, Chen X. GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J Biol Chem. 2006;281(12):7856–62.

    CAS  PubMed  Google Scholar 

  200. Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, Phang JM. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res. 2001;61(5):1810–5.

    CAS  PubMed  Google Scholar 

  201. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–20.

    CAS  PubMed  Google Scholar 

  202. Madan E, Gogna R, Kuppusamy P, Bhatt M, Pati U, Mahdi AA. TIGAR induces p53-mediated cell-cycle arrest by regulation of RB–E2F1 complex. Br J Cancer. 2012;107(3):516–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Masutani H, Ueda S, Yodoi J. The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ. 2005;12(Suppl 1):991–8.

    CAS  PubMed  Google Scholar 

  204. Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene. 1999;18(1):127–37.

    CAS  PubMed  Google Scholar 

  205. Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, Gorodin S, Fishman A, Chajut A, Einat P, Skaliter R, Gudkov AV, Chumakov PM, Feinstein E. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene. 2002;21(39):6017–31.

    CAS  PubMed  Google Scholar 

  206. Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM, Look AT. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell. 2005;123(4):641–53.

    CAS  PubMed  Google Scholar 

  207. Zhang W, Geiman DE, Shields JM, Dang DT, Mahatan CS, Kaestner KH, Biggs JR, Kraft AS, Yang VW. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem. 2000;275(24):18391–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005;7(11):1074–82.

    CAS  PubMed  Google Scholar 

  209. Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN, Ronai Z. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev. 1998;12(17):2658–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O’Rourke K, Koeppen H, Dixit VM. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature. 2004;429(6987):86–92.

    CAS  PubMed  Google Scholar 

  211. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell. 2003;112(6):779–91.

    CAS  PubMed  Google Scholar 

  212. Kimura T, Takeda S, Sagiya Y, Gotoh M, Nakamura Y, Arakawa H. Impaired function of p53R2 in Rrm2b-null mice causes severe renal failure through attenuation of dNTP pools. Nat Genet. 2003;34(4):440–5.

    CAS  PubMed  Google Scholar 

  213. Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature. 2000;404(6773):42–9.

    CAS  PubMed  Google Scholar 

  214. Utrera R, Collavin L, Lazarevic D, Delia D, Schneider C. A novel p53-inducible gene coding for a microtubule-localized protein with G2-phase-specific expression. EMBO J. 1998;17(17):5015–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Monte M, Benetti R, Buscemi G, Sandy P, Del Sal G, Schneider C. The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function. J Biol Chem. 2003;278(32):30356–64.

    CAS  PubMed  Google Scholar 

  216. Braithwaite AW, Del Sal G, Lu X. Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ. 2006;13(6):984–93.

    CAS  PubMed  Google Scholar 

  217. Fang L, Li G, Liu G, Lee SW, Aaronson SA. p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J. 2001;20(8):1931–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Ongusaha PP, Kim JI, Fang L, Wong TW, Yancopoulos GD, Aaronson SA, Lee SW. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J. 2003;22(6):1289–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Han JA, Kim JI, Ongusaha PP, Hwang DH, Ballou LR, Mahale A, Aaronson SA, Lee SW. P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J. 2002;21(21):5635–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Beasley R, Aldington S, Weatherall M, Robinson G, McHaffie D. Oxygen therapy in myocardial infarction: an historical perspective. J R Soc Med. 2007;100(3):130–3.

    PubMed  PubMed Central  Google Scholar 

  221. Kones R. Oxygen therapy for acute myocardial infarction-then and now. A century of uncertainty. Am J Med. 2011;124(11):1000–5.

    CAS  PubMed  Google Scholar 

  222. Yogaratnam JZ, Laden G, Guvendik L, Cowen M, Cale A, Griffin S. Hyperbaric oxygen preconditioning improves myocardial function, reduces length of intensive care stay, and limits complications post coronary artery bypass graft surgery. Cardiovasc Revasc Med. 2010;11(1):8–19.

    PubMed  Google Scholar 

  223. Swartz HM, Hou H, Khan N, Jarvis LA, Chen EY, Williams BB, Kuppusamy P. Advances in probes and methods for clinical EPR oximetry. Adv Exp Med Biol. 2014;812:73–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Swartz HM, Williams BB, Zaki BI, Hartford AC, Jarvis LA, Chen EY, Comi RJ, Ernstoff MS, Hou H, Khan N, Swarts SG, Flood AB, Kuppusamy P. Clinical EPR: unique opportunities and some challenges. Acad Radiol. 2014;21(2):197–206.

    PubMed  PubMed Central  Google Scholar 

  225. Huch R, Lubbers DW, Huch A. Quantitative continuous measurement of partial oxygen pressure on the skin of adults and newborn babies. Pflügers Arch ges Physiol. 1972;337:185–98.

    CAS  Google Scholar 

  226. Huch R, Huch A, Lubbers DW. Transcutaneous measurement of blood Po2 (tcPo2)—method and application in perinatal medicine. J Perinat Med. 1973;1(3):183–91.

    CAS  PubMed  Google Scholar 

  227. Kaur S, Pawar M, Banerjee N, Garg R. Evaluation of the efficacy of hyperbaric oxygen therapy in the management of chronic nonhealing ulcer and role of periwound transcutaneous oximetry as a predictor of wound healing response: a randomized prospective controlled trial. J Anaesthesiol Clin Pharmacol. 2012;28(1):70–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Stucker M, Struk A, Altmeyer P, Herde M, Baumgartl H, Lubbers DW. The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J Physiol. 2002;538(Pt 3):985–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Geis S, Babilas P, Schreml S, Angele P, Nerlich M, Jung EM, Prantl L. Transcutaneous pO2 measurement during tourniquet-induced venous occlusion using dynamic phosphorescence imaging. Clin Hemorheol Microcirc. 2008;40(4):249–58.

    CAS  PubMed  Google Scholar 

  230. Li Z, Navarro-Alvarez N, Keeley EJ, Nowell NH, Goncalves BMM, Huang CA, Evans CL. Non-invasive monitoring of skin inflammation using an oxygen-sensing paint-on bandage. Biomed Opt Express. 2017;8(10):4640–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Li Z, Roussakis E, Koolen PG, Ibrahim AMS, Kim K, Rose LF, Wu J, Nichols AJ, Baek Y, Birngruber R, Apiou-Sbirlea G, Matyal R, Huang T, Chan R, Lin SJ, Evans CL. Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage. Biomed Opt Express. 2014;5(11):3748–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Babilas P, Lamby P, Prantl L, Schreml S, Jung EM, Liebsch G, Wolfbeis OS, Landthaler M, Szeimies RM, Abels C. Transcutaneous pO2 imaging during tourniquet-induced forearm ischemia using planar optical oxygen sensors. Skin Res Technol. 2008;14(3):304–11.

    PubMed  Google Scholar 

  233. Schreml S, Meier RJ, Kirschbaum M, Kong SC, Gehmert S, Felthaus O, Kuchler S, Sharpe JR, Woltje K, Weiss KT, Albert M, Seidl U, Schroder J, Morsczeck C, Prantl L, Duschl C, Pedersen SF, Gosau M, Berneburg M, Wolfbeis OS, Landthaler M, Babilas P. Luminescent dual sensors reveal extracellular pH-gradients and hypoxia on chronic wounds that disrupt epidermal repair. Theranostics. 2014;4(7):721–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Doll CM, Milosevic M, Pintilie M, Hill RP, Fyles AW. Estimating hypoxic status in human tumors: a simulation using Eppendorf oxygen probe data in cervical cancer patients. Int J Radiat Oncol Biol Phys. 2003;55(5):1239–46.

    PubMed  Google Scholar 

  235. Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, Wileyto EP, Jenkins K, Hahn SM, Stevens CW, Judkins AR, Phillips P, Geoerger B, Koch CJ. Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res. 2004;64(5):1886–92.

    CAS  PubMed  Google Scholar 

  236. Gagel B, Piroth M, Pinkawa M, Reinartz P, Zimny M, Kaiser HJ, Stanzel S, Asadpour B, Demirel C, Hamacher K, Coenen HH, Scholbach T, Maneschi P, DiMartino E, Eble MJ. pO polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia? BMC Cancer. 2007;7:113.

    PubMed  PubMed Central  Google Scholar 

  237. Vaupel P, Frinak S, O’Hara M. Direct measurement of reoxygenation in malignant mammary tumors after a single large dose of irradiation. Adv Exp Med Biol. 1984;180:773–82.

    CAS  PubMed  Google Scholar 

  238. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225–39.

    CAS  PubMed  Google Scholar 

  239. Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol. 2001;18(4):243–59.

    CAS  PubMed  Google Scholar 

  240. Cosse JP, Michiels C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anti Cancer Agents Med Chem. 2008;8(7):790–7.

    CAS  Google Scholar 

  241. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29(4):297–307.

    CAS  PubMed  Google Scholar 

  242. Biswas S, Roy S, Banerjee J, Hussain SR, Khanna S, Meenakshisundaram G, Kuppusamy P, Friedman A, Sen CK. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci U S A. 2010;107(15):6976–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Baudelet C, Ansiaux R, Jordan BF, Havaux X, Macq B, Gallez B. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia? Phys Med Biol. 2004;49(15):3389–411.

    PubMed  Google Scholar 

  244. Brurberg KG, Graff BA, Rofstad EK. Temporal heterogeneity in oxygen tension in human melanoma xenografts. Br J Cancer. 2003;89(2):350–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Brurberg KG, Skogmo HK, Graff BA, Olsen DR, Rofstad EK. Fluctuations in pO2 in poorly and well-oxygenated spontaneous canine tumors before and during fractionated radiation therapy. Radiother Oncol. 2005;77(2):220–6.

    PubMed  Google Scholar 

  246. Cardenas-Navia LI, Yu D, Braun RD, Brizel DM, Secomb TW, Dewhirst MW. Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing. Cancer Res. 2004;64(17):6010–7.

    CAS  PubMed  Google Scholar 

  247. Cardenas-Navia LI, Mace D, Richardson RA, Wilson DF, Shan S, Dewhirst MW. The pervasive presence of fluctuating oxygenation in tumors. Cancer Res. 2008;68(14):5812–9.

    CAS  PubMed  Google Scholar 

  248. Matsumoto S, Yasui H, Mitchell JB, Krishna MC. Imaging cycling tumor hypoxia. Cancer Res. 2010;70(24):10019–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Pogue BW, Braun RD, Lanzen JL, Erickson C, Dewhirst MW. Analysis of the heterogeneity of pO2 dynamics during photodynamic therapy with verteporfin. Photochem Photobiol. 2001;74(5):700–6.

    CAS  PubMed  Google Scholar 

  250. Pogue BW, O’Hara JA, Goodwin IA, Wilmot CJ, Fournier GP, Akay AR, Swartz H. Tumor PO(2) changes during photodynamic therapy depend upon photosensitizer type and time after injection. Comp Biochem Physiol A Mol Integr Physiol. 2002;132(1):177–84.

    PubMed  Google Scholar 

  251. Yasui H, Matsumoto S, Devasahayam N, Munasinghe JP, Choudhuri R, Saito K, Subramanian S, Mitchell JB, Krishna MC. Low-field magnetic resonance imaging to visualize chronic and cycling hypoxia in tumor-bearing mice. Cancer Res. 2010;70(16):6427–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Magat J, Jordan BF, Cron GO, Gallez B. Noninvasive mapping of spontaneous fluctuations in tumor oxygenation using 19F MRI. Med Phys. 2010;37(10):5434–41.

    CAS  PubMed  Google Scholar 

  253. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56(19):4509–15.

    CAS  PubMed  Google Scholar 

  254. Vaupel P. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist. 2008;13(Suppl 3):21–6.

    CAS  PubMed  Google Scholar 

  255. Bratasz A, Pandian RP, Deng Y, Petryakov S, Grecula JC, Gupta N, Kuppusamy P. In vivo imaging of changes in tumor oxygenation during growth and after treatment. Magn Reson Med. 2007;57(5):950–9.

    PubMed  PubMed Central  Google Scholar 

  256. Gogna R, Madan E, Khan M, Pati U, Kuppusamy P. p53’s choice of myocardial death or survival: oxygen protects infarct myocardium by recruiting p53 on NOS3 promoter through regulation of p53-Lys(118) acetylation. EMBO Mol Med. 2013;5(11):1662–83.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The studies presented in this chapter were largely supported by NIH grants R01 CA078886, R01 EB005004, R01 EB006153, R01 EB004031, and P01 CA190193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periannan Kuppusamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuppusamy, P. (2020). Sense and Sensibility of Oxygen in Pathophysiology Using EPR Oximetry. In: Berliner, L., Parinandi, N. (eds) Measuring Oxidants and Oxidative Stress in Biological Systems. Biological Magnetic Resonance, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-47318-1_9

Download citation

Publish with us

Policies and ethics