Skip to main content

Morawetz Inequalities for Water Waves

  • Conference paper
  • First Online:
Mathematics of Wave Phenomena

Part of the book series: Trends in Mathematics ((TM))

  • 616 Accesses

Abstract

Morawetz estimates capture the long time local decay properties for various linear and nonlinear dispersive flows. In these notes we provide a brief overview of recent and ongoing work concerning Morawetz estimates for water waves in two space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ai, A.: Low regularity solutions for gravity water waves. Water Waves 1(1), 145–215 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ai, A.: Low regularity solutions for gravity water waves II: the 2D case. Annals in PDE 6(1), (2020)

    Google Scholar 

  3. Alazard, T.: Stabilization of gravity water waves. J. Math. Pures Appl. 114, 51–84 (2018)

    Article  MathSciNet  Google Scholar 

  4. Alazard, T.: Boundary observability of gravity water waves. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(3), 751–779 (2018)

    Article  MathSciNet  Google Scholar 

  5. Alazard, T., Delort, J.-M.: Sobolev estimates for two dimensional gravity water waves. Astérisque 374, viii+241pp. (2015)

    Google Scholar 

  6. Alazard, T., Delort, J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Norm. Supér. 48, 1149–1238 (2015)

    Article  MathSciNet  Google Scholar 

  7. Alazard, T., Métivier, G.: Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves. Commun. Partial Differ. Equ. 34(10–12), 1632–1704 (2009)

    Article  MathSciNet  Google Scholar 

  8. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198, 71–163 (2014)

    Article  MathSciNet  Google Scholar 

  9. Alazard, T., Ifrim, M., Tataru, D.: A Morawetz inequality for water waves (2018, preprint). arXiv:1806.08443

    Google Scholar 

  10. Alazard, T., Ifrim, M., Tataru, D.: A Morawetz inequality for gravity-capillary water waves at low Bond number (2019, preprint). arXiv:1910.02529

    Google Scholar 

  11. Alazard, T., Burq, N., Zuily, C.: Strichartz estimates and the Cauchy problem for the gravity water waves equations. Mem. AMS 256(1229), 1–120 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Alinhac, S.: Paracomposition et opérateurs paradifférentiels. Commun. Partial Differ. Equ. 11(1), 87–121 (1986)

    Article  MathSciNet  Google Scholar 

  13. Alinhac, S.: Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Equ. 14(2), 173–230 (1989)

    Article  Google Scholar 

  14. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

    Google Scholar 

  15. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.-C.: Global well-posedness and scattering for the energy-critical nonlin-ear Schrödinger equation in R 3. Ann. Math.167(3), 767–865 (2008)

    Article  MathSciNet  Google Scholar 

  16. Constantin, P., Saut, J.-C.: Local smoothing properties of dispersive equations. J. Am. Math. Soc. 1(2), 413–439 (1988)

    Article  MathSciNet  Google Scholar 

  17. Dyachenko, A., Kuznetsov, E., Spector, M., Zakharov, V.: Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221(1–2), 73–79 (1996)

    Article  Google Scholar 

  18. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. 175(2), 691–754 (2012)

    Article  MathSciNet  Google Scholar 

  19. Harrop-Griffiths, B., Ifrim, M., Tataru, D.: Finite depth gravity water waves in holomorphic coordinates. Ann. PDE 3(1), 4 (2017)

    Article  MathSciNet  Google Scholar 

  20. Hörmander, L.: Lectures on linear hyperbolic differential equations. In: Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 26. Springer, Berlin (1997)

    Google Scholar 

  21. Hunter, J., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552 (2016)

    Article  MathSciNet  Google Scholar 

  22. Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates II: global. Bull. Soc. Math. France 144(2), 369–394 (2016)

    Article  MathSciNet  Google Scholar 

  23. Ionescu, A., Pusateri, F.: Global solutions for the gravity water waves system in 2d. Invent. Math. 199(3), 653–804 (2015)

    Google Scholar 

  24. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)

    Article  MathSciNet  Google Scholar 

  25. Lannes, D.: Water waves: mathematical analysis and asymptotics. In: Mathematical Surveys and Monographs, vol. 188. American Mathematical Society, Providence (2013)

    Google Scholar 

  26. Longuet-Higgins, M.S.: On integrals and invariants for inviscid, irrotational flow under gravity. J. Fluid Mech. 134, 155–159 (1983)

    Article  MathSciNet  Google Scholar 

  27. Marzuola, J., Metcalfe, J., Tataru, D.: Strichartz estimates and local smoothing estimates for asympototically flat Schrödinger equations. J. Funct. Anal. 255(6), 1497–1553 (2008)

    Article  MathSciNet  Google Scholar 

  28. Metcalfe, J., Tataru, D.: Decay estimates for variable coefficient wave equations in exterior domains. In: Advances in Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol. 78, pp. 201–216. Birkhäuser, Boston (2009)

    Google Scholar 

  29. Métivier, G.: Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems. Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, vol. 5. Edizioni della Normale, Pisa (2008)

    Google Scholar 

  30. Morawetz, C.S.: Time decay for the nonlinear Klein-Gordon equation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 306, pp. 291–296. London, The Royal Society (1968)

    Google Scholar 

  31. Nalimov, V.I.: The Cauchy-Poisson problem. Dinamika Splošn. Sredy, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami), 254, 104–210 (1974)

    Google Scholar 

  32. Ovsjannikov, L.V.: To the shallow water foundation. Arch. Mech. Stos. 26, 407–422 (1974)

    MathSciNet  Google Scholar 

  33. Ozawa, T., Rogers, K.: Sharp Morawetz estimates. J. Anal. Math. 121(1), 163–175 (2013)

    Article  MathSciNet  Google Scholar 

  34. Totz, N., Wu, S.: A rigorous justification of the modulation approximation to the 2D full water wave problem. Commun. Math. Phys. 310, 817–883 (2012)

    Article  MathSciNet  Google Scholar 

  35. Vega, L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102(4), 874–878 (1988)

    MATH  Google Scholar 

  36. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997)

    Article  MathSciNet  Google Scholar 

  37. Wu, S.: Almost global wellposedness of the 2 − D full water wave problem. Invent. Math. 177, 45–135 (2009)

    Article  MathSciNet  Google Scholar 

  38. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

The second author was partially supported by a Clare Boothe Luce Professorship. The third author was partially supported by the NSF grant DMS-1800294 as well as by a Simons Investigator grant from the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tataru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alazard, T., Ifrim, M., Tataru, D. (2020). Morawetz Inequalities for Water Waves. In: Dörfler, W., et al. Mathematics of Wave Phenomena. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-47174-3_1

Download citation

Publish with us

Policies and ethics