Skip to main content

Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11908))

Abstract

Value-based reinforcement-learning algorithms provide state-of-the-art results in model-free discrete-action settings, and tend to outperform actor-critic algorithms. We argue that actor-critic algorithms are limited by their need for an on-policy critic. We propose Bootstrapped Dual Policy Iteration (BDPI), a novel model-free reinforcement-learning algorithm for continuous states and discrete actions, with an actor and several off-policy critics. Off-policy critics are compatible with experience replay, ensuring high sample-efficiency, without the need for off-policy corrections. The actor, by slowly imitating the average greedy policy of the critics, leads to high-quality and state-specific exploration, which we compare to Thompson sampling. Because the actor and critics are fully decoupled, BDPI is remarkably stable, and unusually robust to its hyper-parameters. BDPI is significantly more sample-efficient than Bootstrapped DQN, PPO, and ACKTR, on discrete, continuous and pixel-based tasks. Source code: https://github.com/vub-ai-lab/bdpi. Appendix: https://arxiv.org/abs/1903.04193.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Deterministic actor-critic methods are slightly different and outside the scope of this paper.

  2. 2.

    https://github.com/maximecb/gym-miniworld.

  3. 3.

    Only the number of hidden neurons changes between some environments, a trivial change.

References

  1. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit problem. In: Conference on Learning Theory (COLT) (2012)

    Google Scholar 

  2. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and tree search. In: Advances in Neural Information Processing Systems (NIPS), pp. 5366–5376 (2017)

    Google Scholar 

  3. Arjona-Medina, J.A., Gillhofer, M., Widrich, M., Unterthiner, T., Hochreiter, S.: RUDDER: return decomposition for delayed rewards. arXiv abs/1806.07857 (2018)

  4. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13(5), 834–846 (1983)

    Article  Google Scholar 

  5. Bellemare, M.G., Dabney, W., Munos, R.: A distributional perspective on reinforcement learning. In: International Conference on Machine Learning (ICML), pp. 449–458 (2017)

    Google Scholar 

  6. Bellman, R.: A Markovian decision process. J. Math. Mech. 6, 679–684 (1957)

    MathSciNet  MATH  Google Scholar 

  7. Böhmer, W., Guo, R., Obermayer, K.: Non-deterministic policy improvement stabilizes approximated reinforcement learning. arXiv abs/1612.07548 (2016)

  8. Brockman, G., et al.: OpenAI Gym (2016)

    Google Scholar 

  9. Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by random network distillation. arXiv abs/1810.12894 (2018)

  10. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Advances in Neural Information Processing Systems (NIPS), pp. 2249–2257 (2011)

    Google Scholar 

  11. Chen, R.Y., Sidor, S., Abbeel, P., Schulman, J.: UCB exploration via Q-ensembles. arXiv abs/1706.01502 (2017)

  12. Degris, T., White, M., Sutton, R.S.: Linear off-policy actor-critic. In: International Conference on Machine Learning (ICML) (2012)

    Google Scholar 

  13. Fu, J., Kumar, A., Soh, M., Levine, S.: Diagnosing bottlenecks in deep Q-learning algorithms. arXiv abs/1902.10250 (2019)

  14. Fujimoto, S., Hoof, H.V., Meger, D.: Addressing function approximation error in actor-critic methods. In: International Conference on Machine Learning (ICML), pp. 1582–1591 (2018)

    Google Scholar 

  15. Gruslys, A., Azar, M.G., Bellemare, M.G., Munos, R.: The reactor: a sample-efficient actor-critic architecture. arXiv abs/1704.04651 (2017)

  16. Gu, S., Lillicrap, T., Turner, R.E., Ghahramani, Z., Schölkopf, B., Levine, S.: Interpolated policy gradient: merging on-policy and off-policy gradient estimation for deep reinforcement learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 3849–3858 (2017)

    Google Scholar 

  17. Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R.E., Levine, S.: Q-prop: sample-efficient policy gradient with an off-policy critic. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  18. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv abs/1801.01290 (2018)

  19. van Hasselt, H.: Double Q-learning. In: Neural Information Processing Systems (NIPS), p. 9 (2010)

    Google Scholar 

  20. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning. arXiv abs/1710.02298 (2017)

  21. Kakade, S., Langford, J.: Approximately optimal approximate reinforcement learning. In: International Conference on Machine Learning (ICML), pp. 267–274 (2002)

    Google Scholar 

  22. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Konda, V.R., Borkar, V.S.: Actor-critic-type learning algorithms for Markov decision processes. SIAM J. Control Opt. 38(1), 94–123 (1999)

    Article  MathSciNet  Google Scholar 

  24. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv abs/1509.02971 (2015)

  25. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 8(3–4), 293–321 (1992)

    Google Scholar 

  26. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning (ICML), p. 10 (2016)

    Google Scholar 

  27. Nikolov, N., Kirschner, J., Berkenkamp, F., Andreas, K.: Information-directed exploration for deep reinforcement learning. In: International Conference on Learning Representations (ICLR) (2019, in preparation)

    Google Scholar 

  28. O’Donoghue, B., Munos, R., Kavukcuoglu, K., Mnih, V.: PGQ: combining policy gradient and Q-learning. In: International Conference on Learning Representations (ICLR), p. 15 (2017)

    Google Scholar 

  29. Osband, I., Aslanides, J., Cassirer, A.: Randomized prior functions for deep reinforcement learning. arXiv abs/1806.03335 (2018)

  30. Osband, I., Blundell, C., Pritzel, A., Van Roy, B.: Deep exploration via bootstrapped DQN. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  31. Parisotto, E., Ba, J., Salakhutdinov, R.: Actor-mimic: deep multitask and transfer reinforcement learning. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  32. Pazis, J., Lagoudakis, M.G.: Binary action search for learning continuous-action control policies. In: International Conference on Machine Learning (ICML), pp. 793–800. ACM (2009)

    Google Scholar 

  33. Pirotta, M., Restelli, M., Pecorino, A., Calandriello, D.: Safe policy iteration. In: Proceedings of the 30th International Conference on Machine Learning (ICML), pp. 307–315 (2013)

    Google Scholar 

  34. Rusu, A.A., et al.: Policy distillation. arXiv abs/1511.06295 (2015)

  35. Scherrer, B.: Approximate policy iteration schemes: a comparison. In: Proceedings of the 31th International Conference on Machine Learning (ICML), pp. 1314–1322 (2014)

    Google Scholar 

  36. Schulman, J., Levine, S., Abbeel, P., Jordan, M.I., Moritz, P.: Trust region policy optimization. In: International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  37. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv abs/1707.06347 (2017)

  38. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017)

    Article  Google Scholar 

  39. Sun, W., Gordon, G.J., Boots, B., Bagnell, J.A.: Dual policy iteration. arXiv abs/1805.10755 (2018)

  40. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: Neural Information Processing Systems (NIPS), p. 7 (2000)

    Google Scholar 

  41. Thomas, P.S., Theocharous, G., Ghavamzadeh, M.: High confidence policy improvement. In: International Conference on Machine Learning (ICML), pp. 2380–2388 (2015)

    Google Scholar 

  42. Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)

    Article  Google Scholar 

  43. Wagner, P.: A reinterpretation of the policy oscillation phenomenon in approximate policy iteration. In: Advances in Neural Information Processing Systems (NIPS), pp. 2573–2581 (2011)

    Google Scholar 

  44. Wang, Z., et al.: Sample efficient actor-critic with experience replay. Technical report (2016)

    Google Scholar 

  45. Watkins, C., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  46. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    MathSciNet  MATH  Google Scholar 

  47. Wu, Y., Mansimov, E., Grosse, R.B., Liao, S., Ba, J.: Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation. In: Advances in Neural Information Processing Systems (NIPS), pp. 5279–5288 (2017)

    Google Scholar 

Download references

Acknowledgments

The first and second authors are funded by the Science Foundation of Flanders (FWO, Belgium), respectively as 1129319N Aspirant, and 1SA6619N Applied Researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Steckelmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steckelmacher, D., Plisnier, H., Roijers, D.M., Nowé, A. (2020). Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11908. Springer, Cham. https://doi.org/10.1007/978-3-030-46133-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46133-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46132-4

  • Online ISBN: 978-3-030-46133-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics