Skip to main content

Pairwise Learning to Rank by Neural Networks Revisited: Reconstruction, Theoretical Analysis and Practical Performance

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Abstract

We present a pairwise learning to rank approach based on a neural net, called DirectRanker, that generalizes the RankNet architecture. We show mathematically that our model is reflexive, antisymmetric, and transitive allowing for simplified training and improved performance. Experimental results on the LETOR MSLR-WEB10K, MQ2007 and MQ2008 datasets show that our model outperforms numerous state-of-the-art methods, while being inherently simpler in structure and using a pairwise approach only.

M. Köppel, A. Segner and M. Wagener—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For our implementation of the model and the tests see https://github.com/kramerlab/direct-ranker.

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/

  2. Burges, C., et al.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 89–96. ACM, New York (2005). http://doi.acm.org/10.1145/1102351.1102363

  3. Burges, C., Ragno, R., Le, Q., Burges, C.J.: Learning to rank with non-smooth cost functions. In: Advances in Neural Information Processing Systems 19. MIT Press, Cambridge, January 2007. https://www.microsoft.com/en-us/research/publication/learning-to-rank-with-non-smooth-cost-functions/

  4. Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., Hon, H.W.: Adapting ranking SVM to document retrieval. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 186–193. ACM (2006). https://doi.org/10.1145/1148170.1148205

  5. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach, p. 9, April 2007. https://www.microsoft.com/en-us/research/publication/learning-to-rank-from-pairwise-approach-to-listwise-approach/

  6. Cooper, W.S., Gey, F.C., Dabney, D.P.: Probabilistic retrieval based on staged logistic regression. In: Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 198–210. ACM (1992). http://doi.acm.org/10.1145/133160.133199

  7. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4(Nov), 933–969 (2003). http://dl.acm.org/citation.cfm?id=945365.964285

  8. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2000). http://www.jstor.org/stable/2699986

  9. Fuhr, N.: Optimum polynomial retrieval functions based on the probability ranking principle. ACM Trans. Inf. Syst. (TOIS) 7(3), 183–204 (1989)

    Article  Google Scholar 

  10. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, pp. 115–132 (2000)

    Google Scholar 

  11. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8

    Article  MATH  Google Scholar 

  12. Ibrahim, O.A.S., Landa-Silva, D.: ES-Rank: evolution strategy learning to rank approach. In: Proceedings of the Symposium on Applied Computing, pp. 944–950. ACM (2017). https://doi.org/10.1145/3019612.3019696

  13. Ibrahim, O.A.S., Landa-Silva, D.: An evolutionary strategy with machine learning for learning to rank in information retrieval. Soft Comput. 22(10), 3171–3185 (2018). https://doi.org/10.1007/s00500-017-2988-6

    Article  Google Scholar 

  14. Jiang, L., Li, C., Cai, Z.: Learning decision tree for ranking. Knowl. Inf. Syst. 20(1), 123–135 (2009)

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Li, P., Wu, Q., Burges, C.J.: McRank: learning to rank using multiple classification and gradient boosting. In: Advances in Neural Information Processing Systems, pp. 897–904 (2008)

    Google Scholar 

  17. Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331 (2009). https://doi.org/10.1561/1500000016

    Article  Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Qin, T., Liu, T.: Introducing LETOR 4.0 datasets. CoRR abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

  20. Rigutini, L., Papini, T., Maggini, M., Bianchini, M.: A neural network approach for learning object ranking. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008. LNCS, vol. 5164, pp. 899–908. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87559-8_93

    Chapter  Google Scholar 

  21. Croft, W.B., Callan, J.: Lemur toolkit (2001–2012). http://lemurproject.org/contrib.php

  22. Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Adapting boosting for information retrieval measures. Inf. Retr. 13, 254–270 (2010). https://www.microsoft.com/en-us/research/publication/adapting-boosting-for-information-retrieval-measures/

  23. Xu, J., Li, H.: AdaRank: a boosting algorithm for information retrieval. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2007, pp. 391–398. ACM, New York (2007). https://doi.org/10.1145/1277741.1277809

Download references

Acknowledgement

We would like to thank Dr. Christian Schmitt for his contributions to the work presented in this paper.

We also thank Luiz Frederic Wagner for proof(read)ing the mathematical aspects of our model.

Parts of this research were conducted using the supercomputer Mogon and/or advisory services offered by Johannes Gutenberg University Mainz (hpc.uni-mainz.de), which is a member of the AHRP (Alliance for High Performance Computing in Rhineland Palatinate, www.ahrp.info) and the Gauss Alliance e.V.

The authors gratefully acknowledge the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de).

This research was partially funded by the Carl Zeiss Foundation Project: ‘Competence Centre for High-Performance-Computing in the Natural Sciences’ at the University of Mainz. Furthermore, Andreas Karwath has been co-funded by the MRC grant MR/S003991/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Köppel .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 150 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Köppel, M., Segner, A., Wagener, M., Pensel, L., Karwath, A., Kramer, S. (2020). Pairwise Learning to Rank by Neural Networks Revisited: Reconstruction, Theoretical Analysis and Practical Performance. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11908. Springer, Cham. https://doi.org/10.1007/978-3-030-46133-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46133-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46132-4

  • Online ISBN: 978-3-030-46133-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics