Skip to main content

Cultures of Medicinal Plants In Vitro as a Potential Rich Source of Antioxidants

  • Living reference work entry
  • First Online:
Plant Antioxidants and Health

Abstract

The search for a new natural source of antioxidants has been, for more than a decade, one of the most dynamically developing directions of scientific research conducted by various research centers around the world.

Numerous species of medicinal plants that are a rich source of natural antioxidants have not been fully explored yet. Cultures of such plant species in vitro can also be a potential rich source of antioxidants.

The largest group of plant-based antioxidants is compounds with the structure of polyphenols. They are metabolites frequently found in numerous medicinal plants.

The aim of this chapter is to present the most interesting results of our biotechnological research that have proven the very high biosynthetic potential of cells of medicinal plants grown in vitro, obtained in the production of selected subgroups of polyphenols – phenolic acids, flavonoids specific to the genus Scutellaria, phenylpropanoid glycosides, catechins, and the dibenzocyclooctadiene lignans (Schisandra-type lignans).

As part of the presented research, the conditions for cultivating cultures in vitro were optimized (testing of basal media, quality and quantity of PGRs, feeding with biosynthetic precursors, elicitation, light conditions, and different types of in vitro cultures). The optimization was conducted for in vitro cultures of Aronia spp., Cistus × incanus, Hypericum perforatum (cvs. Elixir, Helos, and Topas), Scutellaria spp., Verbena officinalis, and Schisandra spp. The results of this optimization work are of an application value. Selected types of in vitro cultures of the plant species tested by us are a very rich source of various subgroups of polyphenols, including depsides, selected Scutellaria specific flavonoids (incl. baicalin and wogonoside), selected phenylpropanoid glycosides (incl. verbascoside and isoverbascoside), selected catechins (incl. catechin and epicatechin gallate), and selected Schisandra-type lignans (incl. gomisin A and schisantherin B). The obtained amounts of these compounds are very often, from a few to a several times, higher than in the extracts of plant material from plants growing in vivo (in open air) analyzed for comparison. Extracts from the biomass grown in vitro of some plant species analyzed for antioxidant potential have high antioxidant activity as determined by various methods (DPPH, FRAP, CUPRAC, QUENCHER-CUPRAC, Fe2+ chelating activity, and reducing power assay).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ASE:

Ascorbic acid equivalent

BA:

6-Benzyladenine

CUPRAC:

Cupric reducing antioxidant capacity

DPPH:

1,1-Diphenyl-2-picrylhydrazine radical scavenging assay

DW:

Dry weight

FRAP:

Ferric reducing antioxidant power

GA3:

Gibberellic acid

HPLC:

High performance liquid chromatography

IBA:

3-indolebutyric acid

IC50:

50% Inhibitory concentration

LS:

Linsmaier and Skoog basal medium

MS:

Murashige and Skoog basal medium

NAA:

1-Naphthaleneacetic acid

PGRs:

Plant growth regulators

QUENCHER-CUPRAC:

Quick, easy, new, cheap, and reproducible cupric reducing antioxidant capacity

TCM:

Traditional Chinese Medicine

TE:

Trolox equivalent

TIS:

Temporary immersion systems

YeE:

Yeast extract

References

  1. Sies H, Stahl W (1995) Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 62:1315S–1321S. https://doi.org/10.1093/ajcn/62.6.1315S

    Article  CAS  PubMed  Google Scholar 

  2. Stahl W, Sies H (1997) Antioxidant defense: vitamins E and C and carotenoids. Diabetes 46:14–18. https://doi.org/10.2337/diab.46.2.s14

    Article  Google Scholar 

  3. Heleno SA, Martins A, Queiroz MJRP, Ferreira ICFR (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513. https://doi.org/10.1016/j.foodchem.2014.10.057

    Article  CAS  PubMed  Google Scholar 

  4. Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887. https://doi.org/10.1021/jf026182t

    Article  CAS  PubMed  Google Scholar 

  5. Matkowski A (2008) Plant in vitro culture for the production of antioxidants – a review. Biotechnol Adv 26:548–560. https://doi.org/10.1016/j.biotechadv.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  6. Kawka B, Kwiecień I, Ekiert H (2021) Production of specific flavonoids and verbascoside in shoot cultures of Scutellaria baicalensis. In: Ramawat K, Ekiert H, Goyal S (eds) Plant cell and tissue differentiation and secondary metabolites. Springer Nature Switzerland AG, Cham, pp 249–272

    Chapter  Google Scholar 

  7. Szopa A, Kokotkiewicz A, Klimek-Szczykutowicz M et al (2021) Different types of in vitro cultures of Schisandra chinensis and its cultivar (S. chinensis cv. Sadova): a rich potential source of specific lignans and phenolic compounds. In: Ramawat K, Ekiert H, Goyal S (eds) Plant cell and tissue differentiation and secondary metabolites. Springer Nature Switzerland AG, Cham, pp 309–336

    Google Scholar 

  8. Ekiert H, Szopa A, Kubica P (2021) High production of depsides and other phenolic acids in different types of shoot cultures of three aronias: Aronia melanocarpa, A. arbutifolia and A. × prunifolia. In: Ramawat K, Ekiert H, Goyal S (eds) Plant cell and tissue differentiation and secondary metabolites. Springer Nature Switzerland AG, Cham, pp 337–364

    Google Scholar 

  9. Ellnain-Wojtaszek M, Zgórka G (1999) High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J Liq Chromatogr Relat Technol 22:1457–1471. https://doi.org/10.1081/JLC-100101744

    Article  CAS  Google Scholar 

  10. Schönbichler SA, Bittner LKH, Pallua JD et al (2013) Simultaneous quantification of verbenalin and verbascoside in Verbena officinalis by ATR-IR and NIR spectroscopy. J Pharm Biomed Anal 84:97–102. https://doi.org/10.1016/j.jpba.2013.04.038

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Zhang G, Zhu Z et al (2009) Determination of six lignans in Schisandra chinensis (Turcz.) Baill. fruits and related Chinese multiherb remedies by HPLC. Food Chem 115:735–739. https://doi.org/10.1016/j.foodchem.2008.12.010

    Article  CAS  Google Scholar 

  12. Szopa A, Dziurka M, Warzecha A et al (2018) Targeted lignan profiling and anti-inflammatory properties of Schisandra rubriflora and Schisandra chinensis extracts. Molecules 23:3103. https://doi.org/10.3390/molecules23123103

    Article  CAS  PubMed Central  Google Scholar 

  13. Wang ZL, Wang S, Kuang Y et al (2018) A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol 56:465–484. https://doi.org/10.1080/13880209.2018.1492620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pan J, Yuan C, Lin C et al (2003) Pharmacological activities and mechanisms of natural phenylpropanoid glycosides. Pharmazie 58:767–775

    CAS  PubMed  Google Scholar 

  15. Silva CP, Sampaio GR, Freitas RAMS, Torres EAFS (2018) Polyphenols from guaraná after in vitro digestion: evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes. Food Chem 267:405–409. https://doi.org/10.1016/j.foodchem.2017.08.078

    Article  CAS  PubMed  Google Scholar 

  16. Ortiz-López L, Márquez-Valadez B, Gómez-Sánchez A et al (2016) Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 322:208–220. https://doi.org/10.1016/j.neuroscience.2016.02.040

    Article  CAS  PubMed  Google Scholar 

  17. Kapoor MP, Sugita M, Nishimura A et al (2018) Influence of acute ingestion and regular intake of green tea catechins on resting oxidative stress biomarkers assays in a paralleled randomized controlled crossover supplementation study in healthy men. J Funct Foods 45:381–391. https://doi.org/10.1016/j.jff.2018.04.016

    Article  CAS  Google Scholar 

  18. Spínola V, Pinto J, Llorent-Martínez EJ et al (2019) Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models. Food Chem Toxicol 123:443–452. https://doi.org/10.1016/j.fct.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Yang K, Chan CB (2018) Epicatechin potentiation of glucose-stimulated insulin secretion in INS-1 cells is not dependent on its antioxidant activity. Acta Pharmacol Sin 39:893–902. https://doi.org/10.1038/aps.2017.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oyama J, Shiraki A, Nishikido T et al (2017) EGCG, a green tea catechin, attenuates the progression of heart failure induced by the heart/muscle-specific deletion of MnSOD in mice. J Cardiol 69:417–427. https://doi.org/10.1016/j.jjcc.2016.05.019

    Article  PubMed  Google Scholar 

  21. Carullo G, Durante M, Sciubba F et al (2019) Vasoactivity of Mantonico and Pecorello grape pomaces on rat aorta rings: an insight into nutraceutical development. J Funct Foods 57:328–334. https://doi.org/10.1016/j.jff.2019.04.023

    Article  CAS  Google Scholar 

  22. Shin CM, Lee DH, Seo AY et al (2018) Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: a randomized clinical trial. Clin Nutr 37:452–458. https://doi.org/10.1016/j.clnu.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  23. Rawangkan A, Wongsirisin P, Namiki K et al (2018) Green tea catechin is an alternative immune checkpoint inhibitor that inhibits PD-L1 expression and lung tumor growth. Molecules 23:2071. https://doi.org/10.3390/molecules23082071

    Article  CAS  PubMed Central  Google Scholar 

  24. Pedro AC, Maciel GM, Rampazzo Ribeiro V, Haminiuk CWI (2020) Fundamental and applied aspects of catechins from different sources: a review. Int J Food Sci Technol 55:429–442. https://doi.org/10.1111/ijfs.14371

    Article  CAS  Google Scholar 

  25. Szopa A, Ekiert R, Ekiert H (2017) Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem Rev 16:195–218. https://doi.org/10.1007/s11101-016-9470-4

    Article  CAS  PubMed  Google Scholar 

  26. Szopa A, Barnaś M, Ekiert H (2019) Phytochemical studies and biological activity of three Chinese Schisandra species (Schisandra sphenanthera, Schisandra henryi and Schisandra rubriflora): current findings and future applications. Phytochem Rev 18:109–128. https://doi.org/10.1007/s11101-018-9582-0

    Article  CAS  Google Scholar 

  27. Zhou Y, Men L, Sun Y et al (2021) Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review. Eur J Pharmacol 892:173796. https://doi.org/10.1016/j.ejphar.2020.173796

    Article  CAS  PubMed  Google Scholar 

  28. Koch W (2019) Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases. A systematic review. Nutrients 11:1039. https://doi.org/10.3390/nu11051039

    Article  CAS  PubMed Central  Google Scholar 

  29. Willcox JK, Ash SL, Catignani GL (2004) Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44:275–295. https://doi.org/10.1080/10408690490468489

    Article  CAS  PubMed  Google Scholar 

  30. Choi DY, Lee YJ, Hong JT, Lee HJ (2012) Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res Bull 87:144–153. https://doi.org/10.1016/j.brainresbull.2011.11.014

    Article  CAS  PubMed  Google Scholar 

  31. Fang Z, Bhandari B (2010) Encapsulation of polyphenols – a review. Trends Food Sci Technol 21:510–523. https://doi.org/10.1016/j.tifs.2010.08.003

    Article  CAS  Google Scholar 

  32. Terahara N (2015) Flavonoids in foods: a review. Nat Prod Commun 10:521–528. https://doi.org/10.1177/1934578x1501000334

    Article  CAS  PubMed  Google Scholar 

  33. El Gharras H (2009) Polyphenols: food sources, properties and applications – a review. Int J Food Sci Technol 44:2512–2518. https://doi.org/10.1111/j.1365-2621.2009.02077.x

    Article  CAS  Google Scholar 

  34. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50:586–621. https://doi.org/10.1002/anie.201000044

    Article  CAS  Google Scholar 

  35. Rasouli H, Farzaei MH, Khodarahmi R (2017) Polyphenols and their benefits: a review. Int J Food Prop 20:1700–1741. https://doi.org/10.1080/10942912.2017.1354017

    Article  CAS  Google Scholar 

  36. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233. https://doi.org/10.1016/j.fbp.2010.04.008

    Article  CAS  Google Scholar 

  37. Miceli N, Filocamo A, Ragusa S et al (2017) Chemical characterization and biological activities of phenolic-rich fraction from cauline leaves of Isatis tinctoria L. (Brassicaceae) growing in Sicily, Italy. Chem Biodivers 14. https://doi.org/10.1002/cbdv.201700073

  38. Özyürek M, Güçlü K, Bektaşoğlu B, Apak R (2007) Spectrophotometric determination of ascorbic acid by the modified CUPRAC method with extractive separation of flavonoids–La(III) complexes. Anal Chim Acta 588:88–95. https://doi.org/10.1016/j.aca.2007.01.078

    Article  CAS  PubMed  Google Scholar 

  39. Halbwirth H, Stich K, Cheynier V, Quideau S (2019) Recent advances in polyphenol research. Wiley-Blackwell, New Dehli

    Book  Google Scholar 

  40. Kattappagari KK, Ravi Teja CS, Kommalapati RK et al (2015) Role of antioxidants in facilitating the body functions: a review. J Orofac Sci 7:71–75. https://doi.org/10.4103/0975-8844.169745

    Article  CAS  Google Scholar 

  41. Bellik Y, Boukraâ L, Alzahrani HA et al (2013) Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules 18:322–353. https://doi.org/10.3390/molecules18010322

    Article  CAS  Google Scholar 

  42. Singh A, Holvoet S, Mercenier A (2011) Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 41:1346–1359. https://doi.org/10.1111/j.1365-2222.2011.03773.x

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42. https://doi.org/10.1016/j.cofs.2016.02.002

    Article  Google Scholar 

  44. Xiao JB, Hogger P (2015) Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem 22:23–38. https://doi.org/10.2174/0929867321666140706130807

    Article  CAS  PubMed  Google Scholar 

  45. Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12:43. https://doi.org/10.1186/2251-6581-12-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khurana S, Venkataraman K, Hollingsworth A et al (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5:3779–3827. https://doi.org/10.3390/nu5103779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Curin Y, Andriantsitohaina R (2005) Polyphenols as potential therapeutical agents against cardiovascular diseases. Pharmacol Rep 57:97–107

    PubMed  Google Scholar 

  48. Ghiringhelli F, Rebe C, Hichami A, Delmas D (2012) Immunomodulation and anti-inflammatory roles of polyphenols as anticancer agents. Anti Cancer Agents Med Chem 12:852–873. https://doi.org/10.2174/187152012802650048

    Article  CAS  Google Scholar 

  49. Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M (2016) Anticancer efficacy of polyphenols and their combinations. Nutrients 8:552. https://doi.org/10.3390/nu8090552

    Article  CAS  PubMed Central  Google Scholar 

  50. Fresco P, Borges F, Diniz C, Marques MPM (2006) New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26:747–766

    Article  CAS  Google Scholar 

  51. Aarli JA, Dua T, Janca A, Muscetta A (2006) Neurological disorders – public health challenges. WHO Press, Geneva

    Google Scholar 

  52. Ksiezak-Reding H, Ho L, Santa-Maria I et al (2012) Ultrastructural alterations of Alzheimer’s disease paired helical filaments by grape seed-derived polyphenols. Neurobiol Aging 33:1427–1439. https://doi.org/10.1016/j.neurobiolaging.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  53. Ushikubo H, Watanabe S, Tanimoto Y et al (2012) 3,3′,4′,5,5′-Pentahydroxyflavone is a potent inhibitor of amyloid β fibril formation. Neurosci Lett 513:51–56. https://doi.org/10.1016/j.neulet.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  54. Bhullar KS, Rupasinghe HPV (2013) Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxidative Med Cell Longev ID891748. https://doi.org/10.1155/2013/891748

  55. Jin F, Wu Q, Lu YF et al (2008) Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol 600:78–82. https://doi.org/10.1016/j.ejphar.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  56. Khan MM, Ahmad A, Ishrat T et al (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 1328:139–151. https://doi.org/10.1016/j.brainres.2010.02.031

    Article  CAS  PubMed  Google Scholar 

  57. Kujawska M, Jodynis-Liebert J (2018) Polyphenols in Parkinson’s disease: a systematic review of in vivo studies. Nutrients 10:642. https://doi.org/10.3390/nu10050642

    Article  CAS  PubMed Central  Google Scholar 

  58. Kohlmünzer S (2007) Farmakognozja: podręcznik dla studentów farmacji. Wydawnictwo Lekarskie PZWL, Warszawa

    Google Scholar 

  59. Makri O, Kintzios S (2004) In vitro rosmarinic acid production: an update. In: Ramawat K (ed) Biotechnology of medicinal plants. Vitalizer and therapeutic, Science Publishers, Enfiled, Plymouth, pp 19–31

    Google Scholar 

  60. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gomes CA, Girão Da Cruz T, Andrade JL et al (2003) Anticancer activity of phenolic acids of natural or synthetic origin: a structure-activity study. J Med Chem 46:5395–5401. https://doi.org/10.1021/jm030956v

    Article  CAS  PubMed  Google Scholar 

  62. Foti MC (2007) Antioxidant properties of phenols. J Pharm Pharmacol 59:1673–1685. https://doi.org/10.1211/jpp.59.12.0010

    Article  CAS  PubMed  Google Scholar 

  63. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  64. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M (2003) Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J Plant Physiol 160:1025–1032. https://doi.org/10.1078/0176-1617-00831

    Article  CAS  PubMed  Google Scholar 

  65. Mohagheghzadeh A, Shams-Ardakani M, Ghannadi A, Minaeian M (2004) Rosmarinic acid from Zataria multiflora tops and in vitro cultures. Fitoterapia 75:315–321. https://doi.org/10.1016/j.fitote.2004.01.017

    Article  CAS  PubMed  Google Scholar 

  66. Bulgakov V, Tchernoded GK, Mishchenko NP et al (2003) Effects of Ca2+ channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes. Planta 217:349–355. https://doi.org/10.1007/s00425-003-0996-5

    Article  CAS  PubMed  Google Scholar 

  67. Lukmanul Hakkim F, Gowri Shankar C, Girija S (2007) Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. J Agric Food Chem 55:9109–9117. https://doi.org/10.1021/jf071509h

    Article  CAS  PubMed  Google Scholar 

  68. Taveira M, Pereira DM, Sousa C et al (2009) In vitro cultures of Brassica oleracea L. var. costata DC: potential plant bioreactor for antioxidant phenolic compounds. J Agric Food Chem 57:1247–1252. https://doi.org/10.1021/jf803496x

    Article  CAS  PubMed  Google Scholar 

  69. Ekiert H, Szewczyk A, Kuś A (2009) Free phenolic acids in Ruta graveolens L. in vitro culture. Pharmazie 64:692–694. https://doi.org/10.1691/ph.2009.9592

    Article  CAS  Google Scholar 

  70. Schnablová R, Synková H, Vičánková A et al (2006) Transgenic ipt tobacco over producing cytokinins over accumulates phenolic compounds during in vitro growth. Plant Physiol Biochem 44:526–534. https://doi.org/10.1016/j.plaphy.2006.09.004

  71. Ekiert H, Kwiecień I, Szopa A (2013) Rosmarinic acid production in plant in vitro cultures. Polish J Cosmetol 16:49–58

    Google Scholar 

  72. Szopa A, Kokotkiewicz A, Kubica P et al (2017) Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia and A. x prunifolia, and their antioxidant activities. Eur Food Res Technol 243:1645–1657. https://doi.org/10.1007/s00217-017-2872-8

    Article  CAS  Google Scholar 

  73. Kubica P, Szopa A, Ekiert H (2017) In vitro shoot cultures of pink rock-rose (Cistus x incanus L.) as a potential source of phenolic compounds. Acta Soc Bot Pol 86:1–11. https://doi.org/10.5586/asbp.3563

    Article  CAS  Google Scholar 

  74. Szopa A, Ekiert H, Muszyńska B (2013) Accumulation of hydroxybenzoic acids and other biologically active phenolic acids in shoot and callus cultures of Aronia melanocarpa (Michx.) Elliott (black chokeberry). Plant Cell Tissue Organ Cult 113:323–329. https://doi.org/10.1007/s11240-012-0272-0

    Article  CAS  Google Scholar 

  75. Szopa A, Ekiert H (2014) Production of biologically active phenolic acids in Aronia melanocarpa (Michx.) Elliott in vitro cultures cultivated on different variants of the Murashige and Skoog medium. Plant Growth Regul 72:51–58. https://doi.org/10.1007/s10725-013-9835-2

    Article  CAS  Google Scholar 

  76. Szopa A, Kubica P, Ekiert H (2018) Agitated shoot cultures of Aronia arbutifolia and Aronia × prunifolia: biotechnological studies on the accumulation of phenolic compounds and biotransformation capability. Plant Cell Tissue Organ Cult 134:467–479. https://doi.org/10.1007/s11240-018-1436-3

    Article  CAS  Google Scholar 

  77. Kwiecień I, Szydłowska A, Kawka B et al (2015) Accumulation of biologically active phenolic acids in agitated shoot cultures of three Hypericum perforatum cultivars: ‘Elixir’, ‘Helos’ and ‘Topas’. Plant Cell Tissue Organ Cult 123:273–281. https://doi.org/10.1007/s11240-015-0830-3

    Article  CAS  Google Scholar 

  78. Szopa A, Kubica P, Snoch A, Ekiert H (2018) High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia × prunifolia. Acta Physiol Plant 40:48. https://doi.org/10.1007/s11738-018-2623-x

    Article  CAS  Google Scholar 

  79. Szopa A, Setkiewicz A, Ekiert H (2015) Aronia melanocarpa (black chokeberry) in vitro cultures – potential source of bioactive phenolic acids for phytotherapy. In: The 19th International Congress Phytopharm, Bonn

    Google Scholar 

  80. Szopa A, Kubica P, Komsta Ł et al (2020) The effect of feeding culture media with biogenetic precursors on high production of depsides in agitated shoot cultures of black and red aronias. Plant Cell Tissue Organ Cult 142:379–399. https://doi.org/10.1007/s11240-020-01869-4

    Article  CAS  Google Scholar 

  81. Szopa A, Starzec A, Ekiert H (2018) The importance of monochromatic lights in the production of phenolic acids and flavonoids in shoot cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia × prunifolia. J Photochem Photobiol B Biol 179:91–97. https://doi.org/10.1016/j.jphotobiol.2018.01.005

    Article  CAS  Google Scholar 

  82. Kubica P, Szopa A, Żywko J et al (2019) Agitated and bioreactor’s cultures of aronia species – investigations on accumulation dynamics of bioactive phenolic acids during the growth cycles. In: XI conference “In Vitro Cultures in Biotechnology and Plant Physiology”, Kraków

    Google Scholar 

  83. Kubica P, Pałka A, Szopa A, Ekiert H (2020) Accumulation of phenolic acids in in vitro cultures of black aronia (Aronia melanocarpa) cultivated in PlantForm bioreactors. In: 3-rd ICPMS, Martin/Kraków/Szeged

    Google Scholar 

  84. Kubica P, Pałka A, Szopa A, Ekiert H (2019) Production of phenolic acids in shoot cultures of black aronia (Aronia melanocarpa) cultivated in RITA bioreactors. In: 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA), Innsbruck

    Google Scholar 

  85. Shang X, He XX, Li M et al (2010) The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol 128:279–313. https://doi.org/10.1016/j.jep.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  86. Olennikov DN, Chirikova NK, Tankhaeva LM (2010) Phenolic compounds of Scutellaria baicalensis Georgi. Russ J Bioorganic Chem 36:816–824. https://doi.org/10.1134/S1068162010070046

    Article  CAS  Google Scholar 

  87. Liao H, Ye J, Gao L, Liu Y (2021) The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: a comprehensive review. Biomed Pharmacother 133:110917. https://doi.org/10.1016/j.biopha.2020.110917

    Article  CAS  PubMed  Google Scholar 

  88. Kawka B, Kwiecień I, Ekiert H (2017) Influence of culture medium composition and light conditions on the accumulation of bioactive compounds in shoot cultures of Scutellaria lateriflora L. (American Skullcap) grown in vitro. Appl Biochem Biotechnol 183:1414–1425. https://doi.org/10.1007/s12010-017-2508-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kawka B, Kwiecień I, Ekiert H (2020) Endogenous production of specific flavonoids and verbascoside in agar and agitated microshoot cultures of Scutellaria lateriflora L. and biotransformation potential. Plant Cell Tissue Organ Cult 142:471–482. https://doi.org/10.1007/s11240-020-01837-y

    Article  CAS  Google Scholar 

  90. Dziurka M, Kubica P, Kwiecień I et al (2021) In vitro cultures of some medicinal plant species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora and Scutellaria baicalensis) as a rich potential source of antioxidants – evaluation by CUPRAC and QUENCHER-CUPRAC assays. Plants, 10: 454. https://doi.org/10.3390/plants10030454

  91. Wu L, Georgiev MI, Cao H et al (2020) Therapeutic potential of phenylethanoid glycosides: a systematic review. Med Res Rev 40:2605–2649. https://doi.org/10.1002/med.21717

    Article  CAS  PubMed  Google Scholar 

  92. Xue Z, Yang B (2016) Phenylethanoid glycosides: research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules 21:991. https://doi.org/10.3390/molecules21080991

    Article  CAS  PubMed Central  Google Scholar 

  93. Jiménez C, Riguera R (1994) Phenylethanoid glycosides in plants: structure and biological activity. Nat Prod Rep 11:591–606. https://doi.org/10.1039/NP9941100591

    Article  PubMed  Google Scholar 

  94. Alipieva K, Korkina L, Orhan IE, Georgiev MI (2014) Verbascoside – a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol Adv 32:1065–1076. https://doi.org/10.1016/j.biotechadv.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  95. Kubica P, Szopa A, Dominiak J et al (2020) Verbena officinalis (common vervain) – a review on the investigations of this medicinally important plant species. Planta Med 86:1241–1257. https://doi.org/10.1055/a-1232-5758

    Article  CAS  PubMed  Google Scholar 

  96. Kubica P, Szopa A, Ekiert H (2017) Production of verbascoside and phenolic acids in biomass of Verbena officinalis L. (Vervain) cultured under different in vitro conditions. Nat Prod Res 31:1663–1668. https://doi.org/10.1080/14786419.2017.1286477

    Article  CAS  PubMed  Google Scholar 

  97. Kubica P, Szopa A, Prokopiuk B et al (2020) The influence of light quality on the production of bioactive metabolites – verbascoside, isoverbascoside and phenolic acids and the content of photosynthetic pigments in biomass of Verbena officinalis L. cultured in vitro. J Photochem Photobiol B Biol 203:111768. https://doi.org/10.1016/j.jphotobiol.2019.111768

    Article  CAS  Google Scholar 

  98. Kubica P, Szopa A, Kokotkiewicz A et al (2020) Production of verbascoside, isoverbascoside and phenolic acids in callus, suspension, and bioreactor cultures of Verbena officinalis and biological properties of biomass extracts. Molecules 25:5609. https://doi.org/10.3390/molecules25235609

    Article  CAS  PubMed Central  Google Scholar 

  99. Gadkari PV, Balaraman M (2015) Catechins: sources, extraction and encapsulation: a review. Food Bioprod Process 93:122–138. https://doi.org/10.1016/j.fbp.2013.12.004

    Article  CAS  Google Scholar 

  100. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493. https://doi.org/10.1104/pp.126.2.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kania M, Baraniak J (2011) Wybrane właściwości biologiczne i farmakologiczne zielonej herbaty (Camellia sinesis (L.) O. Kuntze). Postępy Fitoter 1:34–40

    Google Scholar 

  102. Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80:1094–1117. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>3.0.CO;2-1

    Article  CAS  Google Scholar 

  103. Kondo S, Tsuda K, Muto N, Ueda J (2002) Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Sci Hortic (Amsterdam) 96:177–185. https://doi.org/10.1016/S0304-4238(02)00127-9

    Article  CAS  Google Scholar 

  104. Yilmazer-Musa M, Griffith AM, Michels AJ et al (2012) Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J Agric Food Chem 60:8924–8929. https://doi.org/10.1021/jf301147n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kofink M, Papagiannopoulos M, Galensa R (2007) (−)-Catechin in cocoa and chocolate: occurrence and analysis of an atypical flavan-3-ol enantiomer. Molecules 12:1274–1288. https://doi.org/10.3390/12071274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Arts ICW, Van de Putte B, Hollman PCH (2000) Catechin contents of foods commonly consumed in the Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J Agric Food Chem 48:1752–1757. https://doi.org/10.1021/jf000026+

    Article  CAS  PubMed  Google Scholar 

  107. Yonekura L, Aguiar Martins C, Rodrigues Sampaio G et al (2016) Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food Funct 7:2970–2978. https://doi.org/10.1039/c6fo00513f

    Article  CAS  PubMed  Google Scholar 

  108. Tenore GC, Stiuso P, Campiglia P, Novellino E (2013) In vitro hypoglycaemic and hypolipidemic potential of white tea polyphenols. Food Chem 141:2379–2384. https://doi.org/10.1016/j.foodchem.2013.04.128

    Article  CAS  PubMed  Google Scholar 

  109. Restuccia D, Giorgi G, Gianfranco Spizzirri U et al (2018) Autochthonous white grape pomaces as bioactive source for functional jams. Int J Food Sci Technol 54:1313–1320. https://doi.org/10.1111/ijfs.14045

    Article  CAS  Google Scholar 

  110. Opletal L, Sovová H, Bártlová M (2004) Dibenzo[a,c]cyclooctadiene lignans of the genus Schisandra: importance, isolation and determination. J Chromatogr B 812:357–371. https://doi.org/10.1016/j.jchromb.2004.07.040

    Article  CAS  Google Scholar 

  111. Hegnauer R (1994) Chemotaxonomie der Pflanzen. Springer Basel AG, Basel

    Book  Google Scholar 

  112. Wichtl M (2004) Herbal drugs and phytopharmaceuticals: a handbook for practice on a scientific basis. Medpharm, Stuttgart

    Google Scholar 

  113. Hancke JL, Burgos RA, Ahumada F (1999) Schisandra chinensis (Turcz.) Baill. Fitoterapia 70:451–471. https://doi.org/10.1016/S0367-326X(99)00102-1

    Article  CAS  Google Scholar 

  114. Chang J, Reiner J, Xie J (2005) Progress on the chemistry of dibenzocyclooctadiene lignans. Chem Rev 105:4581–4609. https://doi.org/10.1021/cr050531b

    Article  CAS  PubMed  Google Scholar 

  115. Nowak A, Zakłos-Szyda M, Błasiak J et al (2019) Potential of Schisandra chinensis (Turcz.) Baill. in human health and nutrition: a review of current knowledge and therapeutic perspectives. Nutrients 11:333. https://doi.org/10.3390/nu11020333

    Article  CAS  PubMed Central  Google Scholar 

  116. Shi P, He Q, Zhang Y et al (2009) Characterisation and identification of isomeric dibenzocyclooctadiene lignans from Schisandra chinensis by high-performance liquid chromatography combined with electrospray ionisation tandem mass spectrometry. Phytochem Anal 20:197–206. https://doi.org/10.1002/pca.1115

    Article  CAS  PubMed  Google Scholar 

  117. Jiang Y, Fan X, Wang Y et al (2015) Hepato-protective effects of six schisandra lignans on acetaminophen-induced liver injury are partially associated with the inhibition of CYP-mediated bioactivation. Chem Biol Interact 231:83–89. https://doi.org/10.1016/j.cbi.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  118. Slanina J, Táborská E, Lojková L (1997) Lignans in the seeds and fruits of Schisandra chinensis cultured in Europe. Planta Med 63:277–280. https://doi.org/10.1055/s-2006-957676

    Article  CAS  PubMed  Google Scholar 

  119. Liang Y, Zhou Y, Zhang J et al (2014) Pharmacokinetic compatibility of ginsenosides and Schisandra lignans in Shengmai-san: from the perspective of P-glycoprotein. PLoS One 9:1–12. https://doi.org/10.1371/journal.pone.0098717

    Article  CAS  Google Scholar 

  120. Kwan HY, Niu X, Dai W et al (2015) Lipidomic-based investigation into the regulatory effect of Schisandrin B on palmitic acid level in non-alcoholic steatotic livers. Sci Rep 5:1–14. https://doi.org/10.1038/srep09114

    Article  CAS  Google Scholar 

  121. World Health Organization (2007) WHO monographs on selected medicinal plants, vol 3. Fructus Schisandrae, Geneva

    Google Scholar 

  122. Ayres DC, Loike JD (1990) Lignans: chemical, biological and clinical properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  123. Saunders RMK (2000) Monograph of Schisandra (Schisandraceae). In: Systematic botany monographs. The American Society of Plant Taxonomists, American Society of Plant Taxonomists, Michigan, pp 1–146

    Google Scholar 

  124. Editorial Committee on Flora of the People’s Republic of China of the Chinese Academy of Sciences (1991) Flora of the People’s Republic of China, 2nd edn. Science Press, Beijing

    Google Scholar 

  125. Wu Z, Raven P, Hong DY (2008) Flora of China, vol 7. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis

    Google Scholar 

  126. The plant list.org (2020) The Plant List, a working list of all plant species. http://www.theplantlist.org/

  127. Bensky D, Gamble A, Kaptchuk T (1993) Chinese herbal medicine materia medica. Eastland Press, Seattle

    Google Scholar 

  128. Fil’kin AM (1952) About Schizandra chinensis (historical-literary information). Aptechn Delo 2:46–48

    Google Scholar 

  129. China Pharmacopoeia Committee (2005) Pharmacopoeia of the People’s Republic of China. China Chemical Industry Press, Beijing

    Google Scholar 

  130. The Korean Pharmacopoeia (2002) Central Pharmaceutical Affairs Council of Korea, Seoul

    Google Scholar 

  131. Panossian A, Wikman G (2008) Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine. J Ethnopharmacol 118:183–212. https://doi.org/10.1016/j.jep.2008.04.020

    Article  PubMed  Google Scholar 

  132. European Pharmacopoeia 9.0 (2017) Schisandra fruit, European Directorate for the Quality of Medicines, Strasburg, p 1514

    Google Scholar 

  133. Upton R, Graff A, Jolliffe G et al (2011) American herbal pharmacopoeia. Botanical pharmacognosy – microscopic characterization of botanical medicines. CRC Press, Boca Raton

    Google Scholar 

  134. Suzuki T, Yamamoto M (2015) Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med 88:93–100

    Article  CAS  Google Scholar 

  135. Tonelli C, Chio IIC, Tuveson DA (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal 29:1727–1745. https://doi.org/10.1089/ars.2017.7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Su L, Li P, Lu T et al (2019) Protective effect of Schisandra chinensis total lignans on acute alcoholic-induced liver injury related to inhibiting CYP2E1 activation and activating the Nrf2/ARE signaling pathway. Rev Bras Farm 29:198–205. https://doi.org/10.1016/j.bjp.2019.01.008

    Article  CAS  Google Scholar 

  137. Chen Q, Zhan Q, Li Y, et al (2017) Schisandra lignan extract protects against carbon tetrachloride-induced liver injury in mice by inhibiting oxidative stress and regulating the NF-κB and JNK signaling pathways. Evid Based Complement Alternat Med 5140297. https://doi.org/10.1155/2017/5140297

  138. Nagappan A, Jung DY, Kim JH et al (2018) Gomisin N alleviates ethanol-induced liver injury through ameliorating lipid metabolism and oxidative stress. Int J Mol Sci 19:2601. https://doi.org/10.3390/ijms19092601

    Article  CAS  PubMed Central  Google Scholar 

  139. Jiang YM, Wang Y, Tan HS et al (2016) Schisandrol B protects against acetaminophen-induced acute hepatotoxicity in mice via activation of the NRF2/ARE signaling pathway. Acta Pharmacol Sin 37:382–389. https://doi.org/10.1038/aps.2015.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sowndhararajan K, Deepa P, Kim M et al (2018) An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed Pharmacother 97:958–968. https://doi.org/10.1016/j.biopha.2017.10.145

    Article  CAS  PubMed  Google Scholar 

  141. Giridharan VV, Thandavarayan RA, Arumugam S et al (2015) Schisandrin B ameliorates ICV-infused amyloid β induced oxidative stress and neuronal dysfunction through inhibiting RAGE/NF-κB/MAPK and up-regulating HSP/Beclin expression. PLoS One 10:e0142483. https://doi.org/10.1371/journal.pone.0142483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yan T, Sun Y, Gong G et al (2019) The neuroprotective effect of schisandrol A on 6-OHDA-induced PD mice may be related to PI3K/AKT and IKK/IκBα/NF-κB pathway. Exp Gerontol 128:110743. https://doi.org/10.1016/j.exger.2019.110743

    Article  CAS  PubMed  Google Scholar 

  143. Zhang LQ, Sa F, Chong CM et al (2015) Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J Ethnopharmacol 170:8–15. https://doi.org/10.1016/j.jep.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  144. Jafernik K, Szopa A, Barnaś M et al (2020) Schisandra henryi C. B. Clarke in vitro cultures: a promising tool for the production of lignans and phenolic compounds. Plant Cell Tissue Organ Cult 143:45–60. https://doi.org/10.1007/s11240-020-01895-2

    Article  CAS  Google Scholar 

  145. Szopa A, Klimek-Szczykutowicz M, Kokotkiewicz A et al (2018) Phytochemical and biotechnological studies on Schisandra chinensis cultivar Sadova No. 1 – a high utility medicinal plant. Appl Microbiol Biotechnol 102:5105–5120. https://doi.org/10.1007/s00253-018-8981-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Szopa A, Kokotkiewicz A, Marzec-Wróblewska U et al (2016) Accumulation of dibenzocyclooctadiene lignans in agar cultures and in stationary and agitated liquid cultures of Schisandra chinensis (Turcz.) Baill. Appl Microbiol Biotechnol 100:3965–3977. https://doi.org/10.1007/s00253-015-7230-9

    Article  CAS  PubMed  Google Scholar 

  147. Szopa A, Ekiert H (2016) The importance of applied light quality on the production of lignans and phenolic acids in Schisandra chinensis (Turcz.) Baill. cultures in vitro. Plant Cell Tissue Organ Cult 127:115–121. https://doi.org/10.1007/s11240-016-1034-1

    Article  CAS  Google Scholar 

  148. Szopa A, Kokotkiewicz A, Król A et al (2018) Improved production of dibenzocyclooctadiene lignans in the elicited microshoot cultures of Schisandra chinensis (Chinese magnolia vine). Appl Microbiol Biotechnol 102:945–959. https://doi.org/10.1007/s00253-017-8640-7

    Article  CAS  PubMed  Google Scholar 

  149. Szopa A, Kokotkiewicz A, Luczkiewicz M, Ekiert H (2017) Schisandra lignans production regulated by different bioreactor type. J Biotechnol 247:11–17. https://doi.org/10.1016/j.jbiotec.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  150. Biesaga-Kościelniak J, Dziurka M, Ostrowska A et al (2014) Brassinosteroid improves content of antioxidants in seeds of selected leguminous plants. Aust J Crop Sci 8:378–388

    Google Scholar 

Download references

Acknowledgments

Funding: This study was supported by the financial support of the funds of the Ministry of Science and Higher Education Programs: K/DSC/003506, N42/DBS/000010, N42/DBS/000011, N42/DBS/000136 and N42/DBS/00121 and National Science Centre, Poland (grant numbers: 2016/23/D/NZ7/01316 and 2020/37/N/N27/02436).

Author contribution statement: All the authors read and approved the manuscript in its final form. All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Halina Ekiert or Agnieszka Szopa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ekiert, H., Kubica, P., Kwiecień, I., Jafernik, K., Klimek-Szczykutowicz, M., Szopa, A. (2021). Cultures of Medicinal Plants In Vitro as a Potential Rich Source of Antioxidants. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-45299-5_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45299-5_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45299-5

  • Online ISBN: 978-3-030-45299-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics